全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2004 

p19?Arf Suppresses Growth, Progression, and Metastasis of Hras-Driven Carcinomas through p53-Dependent and -Independent Pathways

DOI: 10.1371/journal.pbio.0020242

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ectopic expression of oncogenes such as Ras induces expression of p19Arf, which, in turn, activates p53 and growth arrest. Here, we used a multistage model of squamous cell carcinoma development to investigate the functional interactions between Ras, p19Arf, and p53 during tumor progression in the mouse. Skin tumors were induced in wild-type, p19Arf-deficient, and p53-deficient mice using the DMBA/TPA two-step protocol. Activating mutations in Hras were detected in all papillomas and carcinomas examined, regardless of genotype. Relative to wild-type mice, the growth rate of papillomas was greater in p19Arf-deficient mice, and reduced in p53-deficient mice. Malignant conversion of papillomas to squamous cell carcinomas, as well as metastasis to lymph nodes and lungs, was markedly accelerated in both p19 Arf- and p53-deficient mice. Thus, p19Arf inhibits the growth rate of tumors in a p53-independent manner. Through its regulation of p53, p19Arf also suppresses malignant conversion and metastasis. p53 expression was upregulated in papillomas from wild-type but not p19 Arf-null mice, and p53 mutations were more frequently seen in wild-type than in p19 Arf-null carcinomas. This indicates that selection for p53 mutations is a direct result of signaling from the initiating oncogenic lesion, Hras, acting through p19Arf.

References

[1]  Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, et al. (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci U S A 94: 861–866.
[2]  Birchmeier W, Weidner KM, Hulsken J, Behrens J (1993) Molecular mechanisms leading to cell junction (cadherin) deficiency in invasive carcinomas. Cancer Biol 4: 231–239.
[3]  Bos JL (1989) ras oncogenes in human cancer: A review. Cancer Res 49: 4682–4689.
[4]  Bremner R, Balmain A (1990) Genetic changes in skin tumour progression: Correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61: 407–417.
[5]  Buchmann A, Ruggeri B, Klein-Szanto AJP, Balmain A (1991) Progression of squamous carcinoma cells to spindle carcinomas of mouse skin is associated with an imbalance of H-ras alleles on chromosome 7. Cancer Res 51: 4097–4101.
[6]  Burns PA, Kemp CJ, Gannon JV, Lane DP, Bremner R, et al. (1991) Loss of heterozygosity and mutational alterations of the p53 gene in skin tumors of interspecific hybrid mice. Oncogene 6: 2363–2369.
[7]  Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ (1998) Increasing complexity of Ras signaling. Oncogene 17: 1395–1413.
[8]  Cano A, Gamallo C, Kemp CJ, Benito N, Palacios J, et al. (1996) Expression pattern of the cell adhesion molecules. E-cadherin, P-cadherin and alpha 6 beta 4 intergrin is altered in pre-malignant skin tumors of p53-deficient mice. Int J Cancer 65: 254–262.
[9]  Casanova ML, Larcher F, Casanova B, Murillas R, Fernandez-Acenero MJ, et al. (2002) A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res 62: 3402–3407.
[10]  Clayton D, Hills M (2003) Statistical models in epidemiology. Oxford: Oxford University Press. 367 p.
[11]  Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, et al. (2003) NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421: 639–643.
[12]  de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, et al. (1998) E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12: 2434–2442.
[13]  DiGiovanni J (1992) Multistage carcinogenesis in mouse skin. Pharmacol Ther 54: 63–128.
[14]  Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.
[15]  Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.
[16]  Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, et al. (2002) Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22: 3497–3508.
[17]  Finney RE, Bishop JM (1993) Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science 260: 1524–1527.
[18]  Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: Emerging patterns from divergent signals. Genes Dev 12: 2973–2983.
[19]  Greenhalgh DA, Wang XJ, Donehower LA, Roop DR (1996) Paradoxical tumor inhibitory effect of p53 loss in transgenic mice expressing epidermal-targeted v-ras/Ha, v-fos, or human transforming growth factor alpha. Cancer Res 56: 4413–4423.
[20]  Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.
[21]  Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.
[22]  Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265: 2091–2093.
[23]  Hoa M, Davis SL, Ames SJ, Spanjaard RA (2002) Amplification of wild-type K-ras promotes growth of head and neck squamous cell carcinoma. Cancer Res 62: 7154–7156.
[24]  Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, et al. (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22: 3551–3555.
[25]  Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18: 22–27.
[26]  Jochum W, Passegue E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20: 2401–2412.
[27]  Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, et al. (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19/ARF. Cell 91: 649–659.
[28]  Kamijo T, Bodner S, van de Kamp E, Randle DH, Sherr CJ (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59: 2217–2222.
[29]  Kemp CJ, Donehower LA, Bradley A, Balmain A (1993) Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74: 813–822.
[30]  Kemp CJ, Sun SL, Gurley KE (2001) p53 induction and apoptosis in response to radio- and chemotherapy in vivo is tumor-type-dependent. Cancer Res 61: 327–332.
[31]  Kim MS, Lee EJ, Kim HR, Moon A (2003) p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res 63: 5454–5461.
[32]  Ko LJ, Prives C (1996) p53: Puzzle and paradigm. Genes Dev 10: 1054–1072.
[33]  Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299–303.
[34]  Kuo ML, Duncavage EJ, Mathew R, den Besten W, Pei D, et al. (2003) Arf induces p53-dependent and-independent antiproliferative genes. Cancer Res 63: 1046–1053.
[35]  Lazarov M, Kubo Y, Cai T, Dajee M, Tarutani M, et al. (2002) CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nat Med 8: 1105–1114.
[36]  Lin AW, Lowe SW (2001) Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc Natl Acad Sci U S A 98: 5025–5030.
[37]  Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535–545.
[38]  Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf: Progress and puzzles. Curr Opin Genet Dev 13: 77–83.
[39]  McKeller RN, Fowler JL, Cunningham JJ, Warner N, Smeyne RJ, et al. (2002) The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse eye development. Proc Natl Acad Sci U S A 99: 3848–3853.
[40]  Moore L, Venkatachalam S, Vogel H, Watt JC, Wu CL, et al. (2003) Cooperativity of p19ARF, Mdm2, and p53 in murine tumorigenesis. Oncogene 22: 7831–7837.
[41]  Oft M, Peli J, Rudaz C, Schwarz H, Beug H, et al. (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10: 2462–2477.
[42]  Oft M, Akhurst RJ, Balmain A (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4: 487–494.
[43]  Ozanne BW, McGarry L, Spence HJ, Johnston I, Winnie J, et al. (2000) Transcriptional regulation of cell invasion: AP-1 regulation of a multigenic invasion programme. Eur J Cancer 36: Spec-8.
[44]  Palmero I, Pantoja C, Serrano M (1998) p19ARF links the tumour suppressor p53 to Ras. Nature 395: 125–126.
[45]  Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193.
[46]  Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, et al. (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92: 713–723.
[47]  Pozzatti R, Muschel R, Williams J, Padmanabhan R, Howard B, et al. (1986) Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 232: 223–227.
[48]  Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.
[49]  Quintanilla M, Brown K, Ramsden M, Balmain A (1986) Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322: 78–80.
[50]  Rocha S, Campbell KJ, Perkins ND (2003) p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Molecular Cell 12: 15–25.
[51]  Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 17: 554–564.
[52]  Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochem Biophys Acta 1378: F115–F177.
[53]  Ruggeri B, Caamano J, Goodrow T, DiRado M, Bianchi A, et al. (1991) Alterations of the p53 tumor suppressor gene during mouse skin tumor progression. Cancer Res 51: 6615–6621.
[54]  Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, et al. (1995) c-fos is required for malignant progression of skin tumors. Cell 82: 721–732.
[55]  Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW (1999) INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13: 2670–2677.
[56]  Schreiber E, Matthias P, Muller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17: 6419.
[57]  Schwab M, Alitalo K, Varmus HE, Bishop JM, George D (1983) A cellular oncogene (c-Ki-ras) is amplified, overexpressed, and located within karyotypic abnormalities in mouse adrenocortical tumour cells. Nature 303: 497–501.
[58]  Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.
[59]  Sherr CJ, DePinho RA (2000) Cellular senescence: Mitotic clock or culture shock? Cell 102: 407–410.
[60]  Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10: 94–99.
[61]  Shields JM, Pruitt K, McFall A, Shaub A, Der CJ (2000) Understanding Ras: ‘It ain't over 'til it's over’. Trends Cell Biol 10: 147–154.
[62]  Siognov RV, Haupt Y (1999) The cellular response to p53: The decision between life and death. Oncogene 18: 6145–6157.
[63]  Soh LT, Heng D, Lee IW, Ho TH, Hui KM (2002) The relevance of oncogenes as prognostic markers in cervical cancer. Int J Gynecol Cancer 12: 465–474.
[64]  Stott FJ, Bates S, James MC, McConnell BB, Starborg M, et al. (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014.
[65]  Sugimoto M, Kuo ML, Roussel MF, Sherr CJ (2003) Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 11: 415–424.
[66]  Tanaka T, Slamon DJ, Battifora H, Cline MJ (1986) Expression of p21 ras oncoproteins in human cancers. Cancer Res 46: 1465–1470.
[67]  Tao W, Levine AJ (1999) Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci U S A 96: 3077–3080.
[68]  Timme TL, Thompson TC (1994) Rapid allelotype analysis of p53 knockout mice. Biotechniques 17: 462–463.
[69]  Varghese HJ, Davidson MT, MacDonald IC, Wilson SM, Nadkarni KV, et al. (2002) Activated ras regulates the proliferation/apoptosis balance and early survival of developing micrometastases. Cancer Res 62: 887–891.
[70]  Vogelstein B (1990) Cancer: A deadly inheritance. Nature 348: 681–682.
[71]  Vonlanthen S, Heighway J, Tschan MP, Borner MM, Altermatt HJ, et al. (1998) Expression of p16INK4a/p16alpha and p19ARF/p16beta is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene 17: 2779–2785.
[72]  Vousden KH, Lu X (2002) Live or let die: The cell's response to p53. Nat Rev Cancer 2: 594–604.
[73]  Webb CP, van Aelst L, Wigler MH, Woude GF (1998) Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A 95: 8773–8778.
[74]  Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20–26.
[75]  Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, et al. (2000) p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 14: 2358–2365.
[76]  Winter E, Perucho M (1986) Oncogene amplification during tumorigenesis of established rat fibroblasts reversibly transformed by activated human ras oncogenes. Mol Cell Biol 6: 2562–2570.
[77]  Yarbrough WG, Bessho M, Zanation A, Bisi JE, Xiong Y (2002) Human tumor suppressor ARF impedes S-phase progression independent of p53. Cancer Res 62: 1171–1177.
[78]  Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937–948.
[79]  Yokota J, Tsunetsugu-Yokota Y, Battifora H, Le Fevre C, Cline MJ (1986) Alterations of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show clinical correlation. Science 231: 261–265.
[80]  Young MR, Yang HS, Colburn NH (2003) Promising molecular targets for cancer prevention: AP-1, NF-kappa B and Pdcd4. Trends Mol Med 9: 36–41.
[81]  Yuspa SH (1994) The pathogenesis of squamous cell cancer: Lessons learned from studies of skin carcinogenesis—Thirty-third G. H. A. Clowes Memorial Award Lecture. Cancer Res 54: 1178–1189.
[82]  Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42: 121–130.
[83]  Zhang Y, Xiong Y (1999) Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 3: 579–591.
[84]  Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, et al. (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.
[85]  Zohn IM, Campbell SL, Khosravi-Far R, Rossman KL, Der CJ (1998) Rho family proteins and Ras transformation: The RHOad less traveled gets congested. Oncogene 17: 1415–1438.
[86]  Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, et al. (2000) Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 149: 775–782.
[87]  Zuber J, Tchernitsa OI, Hinzmann B, Schmitz AC, Grips M, et al. (2000) A genome-wide survey of RAS transformation targets. Nature Genet 24: 144–152.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133