全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2004 

Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences

DOI: 10.1371/journal.pbio.0020234

Full-Text   Cite this paper   Add to My Lib

Abstract:

The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection.

References

[1]  Boeke JD, Devine SE (1998) Yeast retrotransposons: Finding a nice quiet neighborhood. Cell 93: 1087–1089.
[2]  Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, et al. (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10: 211–219.
[3]  Bushman FD (1994) Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc Natl Acad Sci U S A 91: 9233–9237.
[4]  Bushman FD (2001) Lateral DNA transfer: Mechanisms and consequences. New York: Cold Spring Harbor Laboratory Press. 448 p.
[5]  Bushman FD (2003) Targeting survival: Integration site selection by retroviruses and LTR-retrotransposons. Cell 115: 135–138.
[6]  Caron H, van Schaik B, van der Mee M, Bass B, Riggins G, et al. (2001) The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Science 291: 1289–1292.
[7]  Carteau S, Hoffmann C, Bushman FD (1998) Chromosome structure and HIV-1 cDNA integration: Centromeric alphoid repeats are a disfavored target. J Virol 72: 4005–4014.
[8]  Cawley S, Bekiranova S, Ng HH, Kapranov P, Sekinger EA, et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116: 499–509.
[9]  Check E (2002) A tragic setback. Nature 420: 116.
[10]  Chubb JR, Bickmore WA (2003) Considering nuclear compartmentalization in light of nuclear dynamics. Cell 112: 403–406.
[11]  Coffin JM, Hughes SH, Varmus HE, editors (1997) Retroviruses. New York: Cold Spring Harbor Laboratory Press. 843 p.
[12]  Corbeil J, Sheeter D, Genini D, Rought S, Leoni L, et al. (2001) Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res 11: 1198–1204.
[13]  Federspiel MJ, Hughes SH (1997) Retroviral gene delivery. Methods Cell Biol 52: 179–214.
[14]  Follenzi A, Ailes LE, Bakovic S, Gueuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genetics 25: 217–222.
[15]  Goulaouic H, Chow SA (1996) Directed integration of viral DNA mediated by fusion proteins consisting of human immunodeficiency virus type 1 integrase and LexA protein. J Virol 70: 37–46.
[16]  Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, et al. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348: 255–256.
[17]  Hatziioannou T, Goff SP (2001) Infection of nondividing cells by Rous sarcoma virus. J Virol 75: 9526–9531.
[18]  Katz RA, Merkel G, Skalka AM (1996) Targeting of retroviral integrase by fusion to a heterologous DNA binding domain: In vitro activities and incorporation of a fusion protein into viral particles. Virology 217: 178–190.
[19]  Katz RA, Greger JG, Darby K, Biomel P, Rall GF, et al. (2002) Transduction of interphase cells by avian sarcoma virus. J Virol 76: 5422–5434.
[20]  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
[21]  Laufs S, Gentner B, Nagy Z, Jauch A, Benner A, et al. (2003) Retroviral vector integration occurs in preferred genomic targets in human bone marrow-repopulating cells. Blood 101: 2191–2198.
[22]  Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, et al. (2002) Murine leukemia induced by retroviral gene marking. Science 296: 497.
[23]  Mitchell R, Chiang C, Berry C, Bushman FD (2003) Global effects on cellular transcription following infection with an HIV-based vector. Mol Ther 8: 674–687.
[24]  Mungall AJ, Palmer SA, Sims SK, Edwards CA, Ashurst JL, et al. (2003) The DNA sequence and analysis of human chromosome 6. Nature 425: 805–811.
[25]  Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263–267.
[26]  Panet A, Cedar H (1977) Selective degradation of integrated murine leukemia proviral DNA by deoxyribonucleases. Cell 11: 933–940.
[27]  Ren C, Lee MK, Yan B, Ding K, Cox B, et al. (2003) A BAC-based physical map of the chicken genome. Genome Res 13: 2754–2758.
[28]  Rohdewohld H, Weiher H, Reik W, Jaenisch R, Breindl M (1987) Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J Virol 61: 336–343.
[29]  Sandmeyer S (2003) Integration by design. Proc Natl Acad Sci U S A 100: 5586–5588.
[30]  Schroder A, Shinn P, Chen H, Berry C, Ecker JR, et al. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521–529.
[31]  Tian B, Zhang Y, Luxon BA, Garofalo RP, Casola A, et al. (2002) Identification of NF-kappaB-dependent gene networks in respiratory syncytial virus-infected cells. J Virol 76: 6800–6814.
[32]  Valsesia-Wittmann S, Drynda A, Deleage G, Aumailley M, Heard JM, et al. (1994) Modifications in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J Virol 68: 4609–4619.
[33]  van 't Wout AB, Lehrman GK, Mikheeva SA, O'Keeffe GC, Katze MG, et al. (2003) Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4+-T-cell lines. J Virol 77: 1392–1402.
[34]  Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al (2001) The sequence of the human genome. Science 291: 1304–1351.
[35]  Versteeg R, van Schaik BD, van Batenberg MF, Roos M, Monajemi R, et al. (2003) The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res 13: 1998–2004.
[36]  Vijaya S, Steffan DL, Robinson HL (1986) Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J Virol 60: 683–692.
[37]  Weidhaas JB, Angelichio EL, Fenner S, Coffin JM (2000) Relationship between retroviral DNA integration and gene expression. J Virol 74: 8382–8389.
[38]  Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300: 1749–1751.
[39]  Zhu Y, Dai J, Fuerst PG, Voytas DF (2003) Controlling integration specificity of yeast retrotransposon. Proc Natl Acad Sci U S A 100: 5891–5895.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133