The innate immune system is ancient and highly conserved. It is the first line of defense and the only recognizable immune system in the vast majority of metazoans. Signaling events that convert pathogen detection into a defense response are central to innate immunity. Drosophila has emerged as an invaluable model organism for studying this regulation. Activation of the NF-κB family member Relish by the caspase-8 homolog Dredd is a central, but still poorly understood, signaling module in the response to gram-negative bacteria. To identify the genes contributing to this regulation, we produced double-stranded RNAs corresponding to the conserved genes in the Drosophila genome and used this resource in genome-wide RNA interference screens. We identified numerous inhibitors and activators of immune reporters in a cell culture model. Epistatic interactions and phenotypes defined a hierarchy of gene action and demonstrated that the conserved gene sickie is required for activation of Relish. We also showed that a second gene, defense repressor 1, encodes a product with characteristics of an inhibitor of apoptosis protein that inhibits the Dredd caspase to maintain quiescence of the signaling pathway. Molecular analysis revealed that Defense repressor 1 is upregulated by Dredd in a feedback loop. We propose that interruption of this feedback loop contributes to signal transduction.
References
[1]
Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680.
[2]
Anderson KV, Jurgens G, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product. Cell 42: 779–789.
[3]
Bergmann A, Yang AY, Srivastava M (2003) Regulators of IAP function: Coming to grips with the grim reaper. Curr Opin Cell Biol 15: 717–724.
[4]
Boutros M, Agaisse H, Perrimon N (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 3: 711–722.
[5]
Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296: 359–362.
[6]
Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, et al. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97: 6499–6503.
[7]
De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21: 2568–2579.
[8]
Dimarcq JL, Imler JL, Lanot R, Ezekowitz RA, Hoffmann JA, et al. (1997) Treatment of 1(2)mbn Drosophila tumorous blood cells with the steroid hormone ecdysone amplifies the inducibility of antimicrobial peptide gene expression. Insect Biochem Mol Biol 27: 877–886.
[9]
Drier EA, Huang LH, Steward R (1999) Nuclear import of the Drosophila Rel protein Dorsal is regulated by phosphorylation. Genes Dev 13: 556–568.
[10]
Dushay MS, Asling B, Hultmark D (1996) Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci U S A 93: 10343–10347.
[11]
Engstrom Y, Kadalayil L, Sun SC, Samakovlis C, Hultmark D, et al. (1993) Kappa B-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 232: 327–333.
[12]
Foley E, O'Farrell PH (2003) Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev 17: 115–125.
[13]
Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, et al. (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1: 503–514.
[14]
Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, et al. (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302: 2126–2130.
[15]
Gottar M, Gobert V, Michel T, Belvin M, Duyk G, et al. (2002) The Drosophila immune response against gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416: 640–644.
[16]
Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, et al. (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4: 827–837.
[17]
Hoffmann JA (2003) The immune response of Drosophila. Nature 426: 33–38.
[18]
Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284: 1313–1318.
[19]
Horng T, Medzhitov R (2001) Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci U S A 98: 12654–12658.
[20]
Hu S, Yang X (2000) dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J Biol Chem 275: 30761–30764.
[21]
Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, et al. (1993) Dif a dorsal-related gene that mediates an immune response in Drosophila. Cell 75: 753–763.
[22]
Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216.
[23]
Khush RS, Cornwell WD, Uram JN, Lemaitre B (2002) A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr Biol 12: 1728–1737.
[24]
Kurz CL, Ewbank JJ (2003) Caenorhabditis elegans An emerging genetic model for the study of innate immunity. Nat Rev Genet 4: 380–390.
[25]
Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M, et al. (1995) A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci U S A 92: 9465–9469.
[26]
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983.
[27]
Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B (2000) The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep 1: 353–358.
[28]
Leulier F, Vidal S, Saigo K, Ueda R, Lemaitre B (2002) Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr Biol 12: 996–1000.
[29]
Li X, Scuderi A, Letsou A, Virshup DM (2002) B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in . Mol Cell Biol 22: 3674–3684.
[30]
Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297: 114–116.
[31]
Lu Y, Wu LP, Anderson KV (2001) The antibacterial arm of the Drosophila innate immune response requires an IkappaB kinase. Genes Dev 15: 104–110.
[32]
Manfruelli P, Reichhart JM, Steward R, Hoffmann JA, Lemaitre B (1999) A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J 18: 3380–3391.
[33]
Medzhitov R, Janeway C (2000) Innate immunity. N Engl J Med 343: 338–344.
[34]
Meng X, Khanuja BS, Ip YT (1999) Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev 13: 792–797.
[35]
Michel T, Reichhart JM, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414: 756–759.
[36]
Naitza S, Rosse C, Kappler C, Georgel P, Belvin M, et al. (2002) The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17: 575–581.
[37]
Nicolas E, Reichhart JM, Hoffmann JA, Lemaitre B (1998) In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila. J Biol Chem 273: 10463–10469.
[38]
Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for . Nature 416: 644–648.
[39]
Rosetto M, Engstrom Y, Baldari CT, Telford JL, Hultmark D (1995) Signals from the IL-1 receptor homolog, Toll, can activate an immune response in a Drosophila hemocyte cell line. Biochem Biophys Res Commun 209: 111–116.
[40]
Rutschmann S, Jung AC, Hetru C, Reichhart JM, Hoffmann JA, et al. (2000a) The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12: 569–580.
[41]
Rutschmann S, Jung AC, Zhou R, Silverman N, Hoffmann JA, et al. (2000b) Role of Drosophila IKK gamma in a toll-independent antibacterial immune response. Nat Immunol 1: 342–347.
[42]
Rutschmann S, Kilinc A, Ferrandon D (2002) Cutting edge: The toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. J Immunol 168: 1542–1546.
[43]
Ryu JH, Nam KB, Oh CT, Nam HJ, Kim SH, et al. (2004) The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in . Mol Cell Biol 24: 172–185.
[44]
Samakovlis C, Asling B, Boman HG, Gateff E, Hultmark D (1992) In vitro induction of cecropin genes—An immune response in a Drosophila blood cell line. Biochem Biophys Res Commun 188: 1169–1175.
[45]
Schmid A, Schindelholz B, Zinn K (2002) Combinatorial RNAi: A method for evaluating the functions of gene families in Drosophila. Trends Neurosci 25: 71–74.
[46]
Silverman N, Zhou R, Stoven S, Pandey N, Hultmark D, et al. (2000) A Drosophila IkappaB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev 14: 2461–2471.
[47]
Silverman N, Zhou R, Erlich RL, Hunter M, Bernstein E, et al. (2003) Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278: 48928–48934.
[48]
Stoven S, Ando I, Kadalayil L, Engstrom Y, Hultmark D (2000) Activation of the Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage. EMBO Rep 1: 347–352.
[49]
Stoven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, et al. (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci U S A 100: 5991–5996.
[50]
Tauszig S, Jouanguy E, Hoffmann JA, Imler JL (2000) Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci U S A 97: 10520–10525.
[51]
Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL (2002) Drosophila MyD88 is required for the response to fungal and gram-positive bacterial infections. Nat Immunol 3: 91–97.
[52]
Vidal S, Khush RS, Leulier F, Tzou P, Nakamura M, et al. (2001) Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. Genes Dev 15: 1900–1912.
[53]
Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, et al. (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4: 794–800.
[54]
Wu LP, Anderson KV (1998) Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392: 93–97.
[55]
Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288: 874–877.