全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2004 

Genomic Analysis of Mouse Retinal Development

DOI: 10.1371/journal.pbio.0020247

Full-Text   Cite this paper   Add to My Lib

Abstract:

The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE). The expression patterns of 1,051 genes that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed in that cell type were identified. The gene expression profiles of retinal Müller glia and mitotic progenitor cells were found to be highly similar, suggesting that Müller glia might serve to produce multiple retinal cell types under the right conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open reading frames of more than 100 amino acids in length (“noncoding RNAs”) were found to be dynamically and specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting point for functional investigations of the roles of these genes in retinal development and physiology.

References

[1]  Alexiades MR, Cepko CL (1996) Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev Dyn 205: 293–307.
[2]  Alexiades MR, Cepko CL (1997) Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Development 124: 1119–1131.
[3]  Altshuler D, Lo Turco JJ, Rush J, Cepko C (1993) Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development 119: 1317–1328.
[4]  Anderson DJ (1999) Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr Opin Neurobiol 9: 517–524.
[5]  Austin CP, Feldman DE, Ida JA, Cepko CL (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121: 3637–3650.
[6]  Belecky-Adams T, Tomarev S, Li HS, Ploder L, McInnes RR, et al. (1997) Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest Ophthalmol Vis Sci 38: 1293–1303.
[7]  Belliveau MJ, Cepko CL (1999) Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development 126: 555–566.
[8]  Belliveau MJ, Young TL, Cepko CL (2000) Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis. J Neurosci 20: 2247–2254.
[9]  Blackshaw S, Fraioli RE, Furukawa T, Cepko CL (2001) Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107: 579–589.
[10]  Blackshaw S, Kuo WP, Park PJ, Tsujikawa M, Gunnersen JM, et al. (2003) MicroSAGE is highly representative and reproducible but reveals major differences in gene expression among samples obtained from similar tissues. Genome Biol 4: R17.
[11]  Brown NL, Patel S, Brzezinski J, Glaser T (2001) Math5 is required for retinal ganglion cell and optic nerve formation. Development 128: 2497–2508.
[12]  Burmeister M, Novak J, Liang MY, Basu S, Ploder L, et al. (1996) Ocular retardation mouse caused by Chx10 homeobox null allele: Impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12: 376–384.
[13]  Cai L, Huang H, Blackshaw S, Liu JS, Cepko CL, et al. (2004) Cluster analysis of SAGE data: A Poisson approach. Genome Biol. In press.
[14]  Cawley S, Bekiranov S, Ng HH, Kapranov K, Sekinger EA, et al. (2004) Unbiased mapping of transcription factor binding sites along human Chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116: 499–509.
[15]  Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93: 589–595.
[16]  Chen S, Wang QL, Nie Z, Sun H, Lennon G, et al. (1997) Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19: 1017–1030.
[17]  Chen CM, Cepko CL (2002) The chicken RaxL gene plays a role in the initiation of photoreceptor differentiation. Development 129: 5363–5375.
[18]  Chuang JC, Mathers PH, Raymond PA (1999) Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev 84: 195–198.
[19]  Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, et al. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278: 1803–1805.
[20]  Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, et al. (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32: 657–671.
[21]  De Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics. In press.
[22]  Desai AR, McConnell SK (2000) Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127: 2863–2872.
[23]  Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6: 1127–1134.
[24]  Dyer MA, Cepko CL (2000a) p57Kip2 regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127: 3593–3605.
[25]  Dyer MA, Cepko CL (2000b) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3: 873–880.
[26]  Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87: 661–673.
[27]  Ezzeddine ZD, Yang X, DeChiara T, Yancopoulos G, Cepko CL (1997) Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124: 1055–1067.
[28]  Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ, et al. (2000) Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 25: 397–401.
[29]  Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4: 247–252.
[30]  Flores GV, Duan H, Yan H, Nagaraj R, Fu W, et al. (2000) Combinatorial signaling in the specification of unique cell fates. Cell 103: 75–85.
[31]  Furukawa T, Kozak CA, Cepko CL (1997a) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94: 3088–3093.
[32]  Furukawa T, Morrow EM, Cepko CL (1997b) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91: 531–541.
[33]  Gammill LS, Bronner-Fraser M (2002) Genomic analysis of neural crest induction. Development 129: 5731–5741.
[34]  Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, et al. (1998) Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech Dev 77: 95–141.
[35]  Gunnersen JM, Augustine C, Spirkoska V, Kim M, Brown M, et al. (2002) Global analysis of gene expression patterns in developing mouse neocortex using serial analysis of gene expression. Mol Cell Neurosci 19: 560–573.
[36]  Haider NB, Naggert JK, Nishina PM (2001) Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet 10: 1619–1626.
[37]  Hanson I, Churchill A, Love J, Axton R, Moore T, et al. (1999) Missense mutations in the most ancient residues of the PAX6 paired domain underlie a spectrum of human congenital eye malformations. Hum Mol Genet 8: 165–172.
[38]  Hartigan J (1975) Clustering algorithms. New York: John Wiley and Sons. 351 p.
[39]  Holt CE, Bertsch TW, Ellis HM, Harris WA (1988) Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1: 15–26.
[40]  Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4: R70.
[41]  Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106: 511–521.
[42]  Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, et al. (2002) A stem cell molecular signature. Science 298: 601–604.
[43]  James J, Das AV, Bhattacharya S, Chacko DM, Zhao X, et al. (2003) In vitro generation of early-born neurons from late retinal progenitors. J Neurosci 23: 8193–8203.
[44]  Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18: 8936–8946.
[45]  Johnson NL, Kotz S, Kemp AW (1992) Univariate discrete distributions, 2nd ed. New York: Wiley Interscience. 592 p.
[46]  Johnson PT, Williams RR, Reese BE (2001) Developmental patterns of protein expression in photoreceptors implicate distinct environmental versus cell-intrinsic mechanisms. Vis Neurosci 18: 157–168.
[47]  Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, et al. (2002) Large-scale transcriptional activity in Chromosomes 21 and 22. Science 296: 916–919.
[48]  Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci U S A 87: 2264–2268.
[49]  Kelley MW, Turner JK, Reh TA (1994) Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120: 2091–2102.
[50]  Kirsch M, Schulz-Key S, Wiese A, Fuhrmann S, Hofmann H (1998) Ciliary neurotrophic factor blocks rod photoreceptor differentiation from postmitotic precursor cells in vitro. Cell Tissue Res 291: 207–126.
[51]  Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22: 5222–5234.
[52]  Kudoh T, Tsang M, Hukriede NA, Chen X, Dedekian M, et al. (2001) A gene expression screen in zebrafish embryogenesis. Genome Res 11: 1979–1987.
[53]  Lash AE, Tolstoshev CM, Wagner L, Schuler GD, Strausberg RL, et al. (2000) SAGEmap: A public gene expression resource. Genome Res 10: 1051–1060.
[54]  Levine EM, Roelink H, Turner J, Reh TA (1997) Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J Neurosci 17: 6277–6288.
[55]  Levine EM, Fuhrmann S, Reh TA (2000) Soluble factors and the development of rod photoreceptors. Cell Mol Life Sci 57: 224–234.
[56]  Levsky JM, Shenoy SM, Pezo RC, Singer RH (2002) Single-cell gene expression profiling. Science 297: 836–840.
[57]  Lin Y, Han M, Shimada B, Wang L, Gibler TM, et al. (2002) Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in . Proc Natl Acad Sci U S A 99: 9562–9567.
[58]  Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, et al. (1994) Developmental expression of a novel murine homeobox gene (Chx10): Evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13: 377–393.
[59]  Livesey FJ, Cepko CL (2001) Vertebrate neural cell-fate determination: Lessons from the retina. Nat Rev Neurosci 2: 109–118.
[60]  Livesey FJ, Young TA, Cepko CL (2004) An analysis of the gene expression program in mammalian neuronal progenitor cells. Proc Natl Acad Sci U S A 101: 1374–1379.
[61]  Lu Q, Hope LW, Brasch M, Reinhard C, Cohen SN (2003) TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc Natl Acad Sci U S A 100: 7626–7631.
[62]  Lumeng C, Phelps S, Crawford GE, Walden PD, Barald K, et al. (1999) Interactions between beta 2-syntrophin and a family of microtubule-associated serine/threonine kinases. Nat Neurosci 2: 611–617.
[63]  Ma C, Papermaster D, Cepko CL (1998) A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. Proc Natl Acad Sci U S A 95: 9938–9943.
[64]  MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: Implications for function. Neuron 20: 971–982.
[65]  Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387: 603–607.
[66]  Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101: 16–22.
[67]  Matter JM, Matter-Sadzinski L, Ballivet M (1995) Activity of the β3 nicotinic receptor promoter is a marker of neuron fate determination during retina development. J Neurosci 15: 5919–5928.
[68]  Mattick JS (2003) Challenging the dogma: The hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 25: 930–939.
[69]  McConnell SK (1988) Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J Neurosci 8: 945–974.
[70]  McDonald MJ, Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107: 567–578.
[71]  Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, et al. (2001) Nrl is required for rod photoreceptor development. Nat Genet 29: 447–452.
[72]  Micklem DR (1995) mRNA localisation during development. Dev Biol 172: 377–395.
[73]  Morest DK, Silver J (2003) Precursors of neurons, neuroglia, and ependymal cells in the CNS: What are they? Where are they from? How do they get where they are going? Glia 43: 6–18.
[74]  Morrow EM, Furukawa T, Lee JE, Cepko CL (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126: 23–36.
[75]  Mu X, Zhao S, Pershad R, Hsieh TF, Scarpa A, et al. (2001) Gene expression in the developing mouse retina by EST sequencing and microarray analysis. Nucleic Acids Res 29: 4983–4993.
[76]  Neidhardt L, Gasca S, Wertz K, Obermayr F, Worpenberg S, et al. (2000) Large-scale screen for genes controlling mammalian embryogenesis, using high-throughput gene expression analysis in mouse embryos. Mech Dev 98: 77–94.
[77]  Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144: 1235–1244.
[78]  Numata K, Kanai A, Saito R, Kondo S, Adachi J, et al. (2003) Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. Genome Res 13: 1301–1306.
[79]  Ohtani N, Goto T, Waeber C, Bhide PG (2003) Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci 23: 2840–2850.
[80]  Pearson BJ, Doe CQ (2003) Regulation of neuroblast competence in Drosophila. Nature 425: 624–628.
[81]  Pritchard CC, Hsu L, Delrow J, Nelson PS (2001) Project normal: Defining normal variance in mouse gene expression. Proc Natl Acad Sci U S A 98: 13266–13271.
[82]  Qian X, Shen Q, Goderie SK, He W, Capela A, et al. (2000) Timing of CNS cell generation: A programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28: 69–80.
[83]  Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: Transcriptional profiling of embryonic and adult stem cells. Science 298: 597–600.
[84]  Rapaport DH, Patheal SL, Harris WA (2001) Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina. J Neurobiol 49: 129–141.
[85]  Reese BE, Necessary BD, Tam PP, Faulkner-Jones B, Tan SS (1999) Clonal expansion and cell dispersion in the developing mouse retina. Eur J Neurosci 11: 2965–2978.
[86]  Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36: 206–220.
[87]  Rodiek RW (1998) The first steps in seeing. Sunderland (Massachusetts): Sinauer Associates. 562 p.
[88]  Rueda D, Navarro B, Martinez-Serrano A, Guzman M, Galve-Roperh I, et al. (2002) The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J Biol Chem 277: 46645–46650.
[89]  Schulz-Key S, Hofmann HD, Beisenherz-Huss C, Barbisch C, Kirsch M (2002) Ciliary neurotrophic factor as a transient negative regulator of rod development in rat retina. Invest Ophthalmol Vis Sci 43: 3099–3108.
[90]  Scoles DR, Nguyen VD, Qin Y, Sun CX, Morrison H, et al. (2002) Neurofibromatosis 2 (NF2) tumor suppressor schwannomin and its interacting protein HRS regulate STAT signaling. Hum Mol Genet 11: 3179–3189.
[91]  Segovia L, Horwitz J, Gasser R, Wistow G (1997) Two roles for mu-crystallin: A lens structural protein in diurnal marsupials and a possible enzyme in mammalian retinas. Mol Vis 3: 9.
[92]  Selleck MA, Bronner-Fraser M (1996) The genesis of avian neural crest cells: A classic embryonic induction. Proc Natl Acad Sci U S A 93: 9352–9357.
[93]  Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, et al. (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. 82: 621–630.
[94]  Sidman RL (1961) Histogenesis of the mouse eye studied with thymidine [3H]. In: Smelser G, editor. The structure of the eye. New York: Academic Press. pp. 497–506.
[95]  Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M (2002) Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111: 687–701.
[96]  Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, et al. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99: 16899–16903.
[97]  Suzuki M, Mizuno A (2004) A novel human Cl(?) channel family related to Drosophila flightless locus. J Biol Chem 279: 22461–22468.
[98]  Thut CJ, Rountree RB, Hwa M, Kingsley DM (2001) A large-scale in situ screen provides molecular evidence for the induction of eye anterior segment structures by the developing lens. Dev Biol 231: 63–76.
[99]  Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, et al. (2003) Single-cell transcriptional analysis of neuronal progenitors. Neuron 38: 161–175.
[100]  Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, et al. (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3: RESEARCH0088.
[101]  Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131–136.
[102]  Turner DL, Snyder EY, Cepko CL (1990) Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4: 833–845.
[103]  Vardimon L, Fox LE, Moscona AA (1986) Developmental regulation of glutamine synthetase and carbonic anhydrase II in neural retina. Proc Natl Acad Sci U S A 83: 9060–9064.
[104]  Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270: 484–487.
[105]  Vetter ML, Moore KB (2001) Becoming glial in the neural retina. Dev Dyn 221: 146–153.
[106]  Vie MP, Evrard C, Osty J, Breton-Gilet A, Blanchet P, et al. (1997) Purification, molecular cloning, and functional expression of the human nicodinamide-adenine dinucleotide phosphate-regulated thyroid hormone-binding protein. Mol Endocrinol 11: 1728–1736.
[107]  Votruba M, Moore AT, Bhattacharya SS (1998) Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. J Med Genet 35: 793–800.
[108]  Walcott JC, Provis JM (2003) Muller cells express the neuronal progenitor cell marker nestin in both differentiated and undifferentiated human foetal retina. Clin Experiment Ophthalmol 31: 246–249.
[109]  Wang SW, Kim BS, Ding K, Wang H, Sun D, et al. (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15: 24–29.
[110]  Watanabe T, Raff MC (1990) Rod photoreceptor development in vitro: Intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4: 461–467.
[111]  Watkins SM, German JB (2002) Metabolomics and biochemical profiling in drug discovery and development. Curr Opin Mol Ther 4: 224–228.
[112]  Wetts R, Fraser SE (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239: 1142–1145.
[113]  Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, et al. (2002) Regulation of cortical dendrite development by Slit-Robo interactions. Neuron 33: 47–61.
[114]  Yeung KY, Haynor DR, Ruzzo WL (2001) Validating clustering for gene expression data. Bioinformatics 17: 309–318.
[115]  Young RW (1985a) Cell differentiation in the retina of the mouse. Anat Rec 212: 199–205.
[116]  Young RW (1985b) Cell proliferation during postnatal development of the retina in the mouse. Brain Res 353: 229–239.
[117]  Young TL, Cepko CL (2004) A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41: 867–879.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133