Prostate cancer is a leading killer of men in the industrialized world. Underlying this disease is the aberrant action of the androgen receptor (AR). AR is distinguished from other nuclear receptors in that after hormone binding, it preferentially responds to a specialized set of coactivators bearing aromatic-rich motifs, while responding poorly to coactivators bearing the leucine-rich “NR box” motifs favored by other nuclear receptors. Under normal conditions, interactions with these AR-specific coactivators through aromatic-rich motifs underlie targeted gene transcription. However, during prostate cancer, abnormal association with such coactivators, as well as with coactivators containing canonical leucine-rich motifs, promotes disease progression. To understand the paradox of this unusual selectivity, we have derived a complete set of peptide motifs that interact with AR using phage display. Binding affinities were measured for a selected set of these peptides and their interactions with AR determined by X-ray crystallography. Structures of AR in complex with FxxLF, LxxLL, FxxLW, WxxLF, WxxVW, FxxFF, and FxxYF motifs reveal a changing surface of the AR coactivator binding interface that permits accommodation of both AR-specific aromatic-rich motifs and canonical leucine-rich motifs. Induced fit provides perfect mating of the motifs representing the known family of AR coactivators and suggests a framework for the design of AR coactivator antagonists.
References
[1]
Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B (1999) The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 19: 6085–6097.
[2]
Asada S, Choi Y, Uesugi M (2003) A gene-expression inhibitor that targets an alpha-helix-mediated protein interaction. J Am Chem Soc 125: 4992–4993.
[3]
Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, et al. (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110: 93–105.
[4]
Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905–921.
[5]
Chang C, Norris JD, Gron H, Paige LA, Hamilton PT, et al. (1999) Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: Discovery of peptide antagonists of estrogen receptors alpha and beta. Mol Cell Biol 19: 8226–8239.
[6]
Culig Z, Klocker H, Bartsch G, Hobisch A (2002) Androgen receptors in prostate cancer. Endocr Relat Cancer 9: 155–170.
[7]
Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, et al. (1998) Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 12: 3343–3356.
[8]
DeLano WL (2002) The PyMOL molecular graphics system. Available: http://www.pymol.org via the Internet. Accessed 2 July 2004.
[9]
Ding XF, Anderson CM, Ma H, Hong H, Uht RM, et al. (1998) Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): Multiple motifs with different binding specificities. Mol Endocrinol 12: 302–313.
[10]
Geistlinger TR, Guy RK (2003) Novel selective inhibitors of the interaction of individual nuclear hormone receptors with a mutually shared steroid receptor coactivator 2. J Am Chem Soc 125: 6852–6853.
[11]
Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121–141.
[12]
Gottlieb B, Lehvaslaiho H, Beitel LK, Lumbroso R, Pinsky L, et al. (1998) The Androgen Receptor Gene Mutations Database. Nucleic Acids Res 26: 234–238.
[13]
Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, et al. (2001) A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61: 4315–4319.
[14]
He B, Wilson EM (2003) Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs. Mol Cell Biol 23: 2135–2150.
[15]
He B, Kemppainen JA, Voegel JJ, Gronemeyer H, Wilson EM (1999) Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 274: 37219–37225.
[16]
He B, Kemppainen JA, Wilson EM (2000) FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275: 22986–22994.
[17]
He B, Lee LW, Minges JT, Wilson EM (2002a) Dependence of selective gene activation on the androgen receptor NH2- and COOH-terminal interaction. J Biol Chem 277: 25631–25639.
[18]
He B, Minges JT, Lee LW, Wilson EM (2002b) The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J Biol Chem 277: 10226–10235.
[19]
Hsu CL, Chen YL, Yeh S, Ting HJ, Hu YC, et al. (2003) The use of phage display technique for the isolation of androgen receptor interacting peptides with (F/W)XXL(F/W) and FXXLY new signature motifs. J Biol Chem 278: 23691–23698.
[20]
Kleywegt GJ (1996) Use of noncrystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr 52: 842–857.
[21]
Langley E, Kemppainen JA, Wilson EM (1998) Intermolecular NH2-/carboxyl-terminal interactions in androgen receptor dimerization revealed by mutations that cause androgen insensitivity. J Biol Chem 273: 92–101.
[22]
Lee HJ, Chang C (2003) Recent advances in androgen receptor action. Cell Mol Life Sci 60: 1613–1622.
[23]
Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, et al. (2000) Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 275: 26164–26171.
[24]
Needham M, Raines S, McPheat J, Stacey C, Ellston J, et al. (2000) Differential interaction of steroid hormone receptors with LXXLL motifs in SRC-1a depends on residues flanking the motif. J Steroid Biochem Mol Biol 72: 35–46.
[25]
Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, et al. (1992) Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci U S A 89: 6319–6323.
[26]
Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, et al. (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395: 137–143.
[27]
Norris JD, Paige LA, Christensen DJ, Chang CY, Huacani MR, et al. (1999) Peptide antagonists of the human estrogen receptor. Science 285: 744–746.
[28]
Northrop JP, Nguyen D, Piplani S, Olivan SE, Kwan ST, et al. (2000) Selection of estrogen receptor beta- and thyroid hormone receptor beta-specific coactivator-mimetic peptides using recombinant peptide libraries. Mol Endocrinol 14: 605–622.
[29]
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW, Sweet RM, editors. Methods in enzymology: Macromolecular crystallography, Part A. New York: Academic Press. pp. 307–326.
[30]
Paige LA, Christensen DJ, Gron H, Norris JD, Gottlin EB, et al. (1999) Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc Natl Acad Sci U S A 96: 3999–4004.
[31]
Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, et al. (1995) Androgen receptor defects: Historical, clinical, and molecular perspectives. Endocr Rev 16: 271–321.
[32]
Sack JS, Kish KF, Wang C, Attar RM, Kiefer SE, et al. (2001) Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci U S A 98: 4904–4909.
[33]
Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, et al. (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95: 927–937.
[34]
Slagsvold T, Kraus I, Bentzen T, Palvimo J, Saatcioglu F (2000) Mutational analysis of the androgen receptor AF-2 (activation function 2) core domain reveals functional and mechanistic differences of conserved residues compared with other nuclear receptors. Mol Endocrinol 14: 1603–1617.
[35]
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, et al. (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.
[36]
Wang Q, Lu J, Yong EL (2001) Ligand- and coactivator-mediated transactivation function (AF2) of the androgen receptor ligand-binding domain is inhibited by the cognate hinge region. J Biol Chem 276: 7493–7499.
[37]
Warnmark A, Almlof T, Leers J, Gustafsson JA, Treuter E (2001) Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERalpha and ERbeta. J Biol Chem 276: 23397–23404.
[38]
Warnmark A, Treuter E, Gustafsson JA, Hubbard RE, Brzozowski AM, et al. (2002) Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor alpha. J Biol Chem 277: 21862–21868.