全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reconstructing Mammalian Sleep Dynamics with Data Assimilation

DOI: 10.1371/journal.pcbi.1002788

Full-Text   Cite this paper   Add to My Lib

Abstract:

Data assimilation is a valuable tool in the study of any complex system, where measurements are incomplete, uncertain, or both. It enables the user to take advantage of all available information including experimental measurements and short-term model forecasts of a system. Although data assimilation has been used to study other biological systems, the study of the sleep-wake regulatory network has yet to benefit from this toolset. We present a data assimilation framework based on the unscented Kalman filter (UKF) for combining sparse measurements together with a relatively high-dimensional nonlinear computational model to estimate the state of a model of the sleep-wake regulatory system. We demonstrate with simulation studies that a few noisy variables can be used to accurately reconstruct the remaining hidden variables. We introduce a metric for ranking relative partial observability of computational models, within the UKF framework, that allows us to choose the optimal variables for measurement and also provides a methodology for optimizing framework parameters such as UKF covariance inflation. In addition, we demonstrate a parameter estimation method that allows us to track non-stationary model parameters and accommodate slow dynamics not included in the UKF filter model. Finally, we show that we can even use observed discretized sleep-state, which is not one of the model variables, to reconstruct model state and estimate unknown parameters. Sleep is implicated in many neurological disorders from epilepsy to schizophrenia, but simultaneous observation of the many brain components that regulate this behavior is difficult. We anticipate that this data assimilation framework will enable better understanding of the detailed interactions governing sleep and wake behavior and provide for better, more targeted, therapies.

References

[1]  Saper CB, Scammel TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257–63. doi: 10.1038/nature04284
[2]  Tamakawa Y, Karashima A, Koyoma Y, Katayama N, Nakao M (2006) A quartet neural system model orchestrating sleep and wakefulness mechanisms. J Neurophysiol 95: 2055–69. doi: 10.1152/jn.00575.2005
[3]  Diniz Behn CG, Brown EN, Scammel TE, Kopell NJ (2007) Mathematical model of network dynamics governing mouse sleep. J Neurophysiol 97: 3828–40. doi: 10.1152/jn.01184.2006
[4]  Diniz Behn CG, Booth V (2010) Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network. J Neurophysiol 103: 1937–1953. doi: 10.1152/jn.00795.2009
[5]  Phillips JK, Robinson PA (2007) A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biological Rhythms 22: 167–179. doi: 10.1177/0748730406297512
[6]  Rempe MJ, Best J, Terman D (2010) A mathematical model of the sleep/wake cycle. J Mathematical Biology 60: 615–44. doi: 10.1007/s00285-009-0276-5
[7]  Kothare SV, Zarowski M (2011) Sleep and epilepsy: common bedfellows. J Clinical Neurophysiol 28: 101–2. doi: 10.1097/wnp.0b013e3182120d30
[8]  Coogan AN, Thome J (2011) Chronotherapeutics and psychiatry: setting the clock to relieve the symptoms. World J Biol Psychiatry 12: 40–43.
[9]  Chase RM, Pincus DB (2011) Sleep-related problems in children and adolescents with anxiety disorders. Behav Sleep Med 9: 224–36. doi: 10.1080/15402002.2011.606768
[10]  Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. UK: Cambridge University Press. 364 p.
[11]  Voss HU, Timmer J (2004) Nonlinear dynamical system identification from uncertain and indirect measurements. International Journal of Bifurcation and Chaos 14: 1905–1933. doi: 10.1142/s0218127404010345
[12]  Fleshner M, Booth V, Forger DB, Diniz Behn CG (2011) Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus. Philos Transact A Math Phys Eng Sci 369: 3855–83. doi: 10.1098/rsta.2011.0085
[13]  McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189: 58–60. doi: 10.1126/science.1135627
[14]  Fuller PM, Saper CB, Lu J (2007) The pontine REM switch: past and present. The Journal of Physiology 584: 735–41. doi: 10.1113/jphysiol.2007.140160
[15]  Ohno K, Sakurai T (2008) Orexin neuronal circuitry: Role in the regulation of sleep and wakefulness. Frontiers in Neuroendocrinology 29: 70–87. doi: 10.1016/j.yfrne.2007.08.001
[16]  Porkka-Heiskanen T, Strecke RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99: 507–517. doi: 10.1016/s0306-4522(00)00220-7
[17]  Huang ZL, Urade Y, Hayaishi O (2011) The role of adenosine in the regulation of sleep. Curr Top Med Chem 11: 1047–57. doi: 10.2174/156802611795347654
[18]  Borbely AA (1982) A two-process model of sleep regulation. Human Neurobiology 1: 195–204.
[19]  Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: Implications for the circadian control of behavioural state. Neuroscience 130: 165–183. doi: 10.1016/j.neuroscience.2004.08.030
[20]  Verwey M, Amir S (2009) Food-entrainable circadian oscillators in the brain. European Journal of Neuroscience 30: 1650–1657. doi: 10.1111/j.1460-9568.2009.06960.x
[21]  Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295: 1065–1070. doi: 10.1126/science.1069609
[22]  Krout KE, Kawano J, Mettenleiter TC, Loewy AD (2002) CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110: 73–92. doi: 10.1016/s0306-4522(01)00551-6
[23]  Quigg M (2000) Circadian rhythms: interactions with seizures and epilepsy. Epilepsy Research 42: 43–55. doi: 10.1016/s0920-1211(00)00157-1
[24]  Hofstra WA, de Weerd AW (2009) The circadian rhythm and its interaction with human epilepsy: A review of literature. Sleep Medicine Reviews 13: 413–420. doi: 10.1016/j.smrv.2009.01.002
[25]  Kalman RE (1960) A new approach to linear filtering and prediciton problems. Transactions of the ASME Journal of Basic Engineering 82: 35–45. doi: 10.1115/1.3662552
[26]  Julier SJ, Uhlmann JK (1997) A new extension of the Kalman filter to nonlinear systems. P SPIE 3068: 182–193. doi: 10.1117/12.280797
[27]  Schiff SJ (2012) Neural Control Engineering. MIT Press. 384 p.
[28]  Simon D (2006) Optimal state estimation: Kalman, H [infinity] and nonlinear approaches. Hoboken, NJ: Wiley- Interscience. 552 p.
[29]  Miyoshi T (2011) The Gaussian approach to adaptive covariance ination and its implementation with the local ensemble transform. Monthly Weather Review 139: 1519–35. doi: 10.1175/2010mwr3570.1
[30]  Anderson JL, Anderson SL (2011) A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. American Meterological Society 127: 2741–58. doi: 10.1175/1520-0493(1999)127<2741:amciot>2.0.co;2
[31]  Mehra R (1970) On the identification of variances and adaptiveKalman filtering. IEEE Transactions on Automatic Control 15: 175–184. doi: 10.1109/tac.1970.1099422
[32]  Mohamed AH (1999) Schwarz (1999) Adaptive Kalman filtering for INS/GPS. Journal of Geodesy 73: 193–203. doi: 10.1007/s001900050236
[33]  Wang J (2000) Stochastic modeling for real-time kinematic GPS/GLONASS position. Navigation 46: 297–305.
[34]  Korniyenko OV, Sharawi MS, Aloi DN (2005) Neural network based approach for tuning KALMAN filter. In: Electro Information Technology, 2005 IEEE International Conference on. pp 1–5.
[35]  Odelson BJ, Lutz A, Rawlings JB (2006) The autocovariance least-squares method for estimating covariances: application to model-based control of chemical reactors. IEEE Transactions on Control Systems Technology 14: 532–540. doi: 10.1109/tcst.2005.860519
[36]  Akesson BM, Jrgensen JB, Poulsen NK, Jrgensen SB (2008) A generalized autocovariance leastsquares method for Kalman filter tuning. Journal of Process Control 18: 769–779. doi: 10.1016/j.jprocont.2007.11.003
[37]  Jatoth RK, Kumar TK (2009) Particle swarm optimization based tuning of unscented Kalman filter for bearings only tracking. In: Advances in Recent Technologies in Communication and Computing, 2009. ARTCom '09. International Conference on. pp 444–448.
[38]  Rajamani MR, Rawlings JB (2009) Estimation of the disturbance structure from data using semidefinite programming and optimal weighting. Automatica 45: 142–148. doi: 10.1016/j.automatica.2008.05.032
[39]  Deng B, Wang J, Che Y (2009) A combined method to estimate parameters of neuron from a heavily noise-corrupted time series of active potential. Chaos 19: 015105. doi: 10.1063/1.3092907
[40]  van Domselaar B, Hemkar P (1975) Nonlinear parameter estimation in initial value problems. Technical report. Mathematical Centre Amsterdam.
[41]  Kalman RE (1960) On the general theory of control systems. Proc IFAC 1st International Congress 1: 481–92.
[42]  Letellier C, Aguirre LA (2002) Investigating nonlinear dynamics from time series: The inuence of symmetries and the choice of observables. Chaos 12: 549–558. doi: 10.1063/1.1487570
[43]  Hu X, Nenov V, Bergsneider M, Glenn TC, Vespa P, et al. (2007) Estimation of hidden state variables of the intracranial system using constrained nonlinear Kalman filters. IEEE transactions on Bio-Medical Engineering 54: 597–610. doi: 10.1109/tbme.2006.890130
[44]  Quach M, Brunel N, D'Alché-Buc F (2007) Estimating parameters and hidden variables in nonlinear state-space models based on ODEs for biological networks inference. Bioinformatics 23: 3209–16. doi: 10.1093/bioinformatics/btm510
[45]  Eberle C, Ament C (2010) The unscented Kalman filter estimates the plasma insulin from glucose measurement. Bio Systems 103: 67–72. doi: 10.1016/j.biosystems.2010.09.012
[46]  Ullah G, Schiff SJ (2010) Assimilating seizure dynamics. PLoS Computational Biology 6: e1000776. doi: 10.1371/journal.pcbi.1000776
[47]  Schiff SJ (2010) Towards model-based control of Parkinson's disease. Philos Transact A Math Phys Eng Sci 368: 2269–308.
[48]  Freestone DR, Aram P, Dewar M, Scerri K, Grayden DB, et al. (2011) A data-driven framework for neural field modeling. Neuro Image 56: 1043–58. doi: 10.1016/j.neuroimage.2011.02.027
[49]  Toth B, Kostuk M, Meliza C, Margoliash D, Abarbanel H (2006) Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105: 1–21. doi: 10.1007/s00422-011-0459-1
[50]  Letellier C, Aguirre L (2010) Interplay between synchronization, observability, and dynamics. Phys Rev E 82: 1–11. doi: 10.1103/physreve.82.016204
[51]  Letellier C, Aguirre LA, Maquet J (2005) Relation between observability and differential embeddings for nonlinear dynamics. Phys Rev E 71: 066213. doi: 10.1103/physreve.71.066213
[52]  Letellier C, Aguirre L (2009) Symbolic observability coefficients for univariate and multivariate analysis. Phys Rev E 79: 066210. doi: 10.1103/physreve.79.066210
[53]  Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64: 821–824. doi: 10.1103/physrevlett.64.821
[54]  Parlitz U (1996) Estimating model parameters from time series by autosynchronization. Phys Rev Lett 76: 1232–1235. doi: 10.1103/physrevlett.76.1232
[55]  Maybhate A, Amritkar RE (1999) Use of synchronization and adaptive control in parameter estimation from a time series. Phys Rev E 59: 284–293. doi: 10.1103/physreve.59.284
[56]  Konnur R (2003) Synchronization-based approach for estimating all model parameters of chaotic systems. Phys Rev E 67: 027204. doi: 10.1103/physreve.67.027204
[57]  Huang D (2004) Synchronization-based estimation of all parameters of chaotic systems from time series. Phys Rev E 69: 6–9. doi: 10.1103/physreve.69.067201
[58]  Abarbanel HDI, Creveling DR, Jeanne JM (2008) Estimation of parameters in nonlinear systems using balanced synchronization. Phys Rev E 77: 016208. doi: 10.1103/physreve.77.016208
[59]  Vaida F (2005) Parameter convergence for EM and MM algorithms. Statistica Sinica 15: 831–840.
[60]  Wu JCF (1983) On the convergence properties of theEM algorithm. The Annals of Statistics 11: 95–103. doi: 10.1214/aos/1176346060
[61]  Jacquez JA, Greif P (1985) Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design. Mathematical Biosciences 77: 201–227. doi: 10.1016/0025-5564(85)90098-7
[62]  Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, et al. (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25: 1923–9. doi: 10.1093/bioinformatics/btp358
[63]  Raue A, Becker V, Klingmüller U, Timmer J (2010) Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos 20: 045105. doi: 10.1063/1.3528102
[64]  Raue A, Kreutz C, Maiwald T, Klingmuller U, Timmer J (2011) Addressing parameter identifiability by model-based experimentation. IET Systems Biology 5: 120. doi: 10.1049/iet-syb.2010.0061
[65]  Margaria G, Riccomagno E, White LJ (2004) Structural identifiability analysis of some highly structured families of statespace models using differential algebra. J Math Biol 49: 433–454. doi: 10.1007/s00285-003-0261-3
[66]  Sunderam S, Chernyy N, Peixoto N, Mason JP, Weinstein SL, et al. (2007) Improved sleep-wake and behavior discrimination using MEMS accelerometers. Journal of Neuroscience Methods 163: 373–83. doi: 10.1016/j.jneumeth.2007.03.007
[67]  Michael AC, Borland LM, editors (2007) Electrochemical Methods for Neuroscience, CRC Press, chapter 19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133