[1] | Saper CB, Scammel TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257–63. doi: 10.1038/nature04284
|
[2] | Tamakawa Y, Karashima A, Koyoma Y, Katayama N, Nakao M (2006) A quartet neural system model orchestrating sleep and wakefulness mechanisms. J Neurophysiol 95: 2055–69. doi: 10.1152/jn.00575.2005
|
[3] | Diniz Behn CG, Brown EN, Scammel TE, Kopell NJ (2007) Mathematical model of network dynamics governing mouse sleep. J Neurophysiol 97: 3828–40. doi: 10.1152/jn.01184.2006
|
[4] | Diniz Behn CG, Booth V (2010) Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network. J Neurophysiol 103: 1937–1953. doi: 10.1152/jn.00795.2009
|
[5] | Phillips JK, Robinson PA (2007) A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biological Rhythms 22: 167–179. doi: 10.1177/0748730406297512
|
[6] | Rempe MJ, Best J, Terman D (2010) A mathematical model of the sleep/wake cycle. J Mathematical Biology 60: 615–44. doi: 10.1007/s00285-009-0276-5
|
[7] | Kothare SV, Zarowski M (2011) Sleep and epilepsy: common bedfellows. J Clinical Neurophysiol 28: 101–2. doi: 10.1097/wnp.0b013e3182120d30
|
[8] | Coogan AN, Thome J (2011) Chronotherapeutics and psychiatry: setting the clock to relieve the symptoms. World J Biol Psychiatry 12: 40–43.
|
[9] | Chase RM, Pincus DB (2011) Sleep-related problems in children and adolescents with anxiety disorders. Behav Sleep Med 9: 224–36. doi: 10.1080/15402002.2011.606768
|
[10] | Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. UK: Cambridge University Press. 364 p.
|
[11] | Voss HU, Timmer J (2004) Nonlinear dynamical system identification from uncertain and indirect measurements. International Journal of Bifurcation and Chaos 14: 1905–1933. doi: 10.1142/s0218127404010345
|
[12] | Fleshner M, Booth V, Forger DB, Diniz Behn CG (2011) Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus. Philos Transact A Math Phys Eng Sci 369: 3855–83. doi: 10.1098/rsta.2011.0085
|
[13] | McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189: 58–60. doi: 10.1126/science.1135627
|
[14] | Fuller PM, Saper CB, Lu J (2007) The pontine REM switch: past and present. The Journal of Physiology 584: 735–41. doi: 10.1113/jphysiol.2007.140160
|
[15] | Ohno K, Sakurai T (2008) Orexin neuronal circuitry: Role in the regulation of sleep and wakefulness. Frontiers in Neuroendocrinology 29: 70–87. doi: 10.1016/j.yfrne.2007.08.001
|
[16] | Porkka-Heiskanen T, Strecke RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99: 507–517. doi: 10.1016/s0306-4522(00)00220-7
|
[17] | Huang ZL, Urade Y, Hayaishi O (2011) The role of adenosine in the regulation of sleep. Curr Top Med Chem 11: 1047–57. doi: 10.2174/156802611795347654
|
[18] | Borbely AA (1982) A two-process model of sleep regulation. Human Neurobiology 1: 195–204.
|
[19] | Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: Implications for the circadian control of behavioural state. Neuroscience 130: 165–183. doi: 10.1016/j.neuroscience.2004.08.030
|
[20] | Verwey M, Amir S (2009) Food-entrainable circadian oscillators in the brain. European Journal of Neuroscience 30: 1650–1657. doi: 10.1111/j.1460-9568.2009.06960.x
|
[21] | Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295: 1065–1070. doi: 10.1126/science.1069609
|
[22] | Krout KE, Kawano J, Mettenleiter TC, Loewy AD (2002) CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110: 73–92. doi: 10.1016/s0306-4522(01)00551-6
|
[23] | Quigg M (2000) Circadian rhythms: interactions with seizures and epilepsy. Epilepsy Research 42: 43–55. doi: 10.1016/s0920-1211(00)00157-1
|
[24] | Hofstra WA, de Weerd AW (2009) The circadian rhythm and its interaction with human epilepsy: A review of literature. Sleep Medicine Reviews 13: 413–420. doi: 10.1016/j.smrv.2009.01.002
|
[25] | Kalman RE (1960) A new approach to linear filtering and prediciton problems. Transactions of the ASME Journal of Basic Engineering 82: 35–45. doi: 10.1115/1.3662552
|
[26] | Julier SJ, Uhlmann JK (1997) A new extension of the Kalman filter to nonlinear systems. P SPIE 3068: 182–193. doi: 10.1117/12.280797
|
[27] | Schiff SJ (2012) Neural Control Engineering. MIT Press. 384 p.
|
[28] | Simon D (2006) Optimal state estimation: Kalman, H [infinity] and nonlinear approaches. Hoboken, NJ: Wiley- Interscience. 552 p.
|
[29] | Miyoshi T (2011) The Gaussian approach to adaptive covariance ination and its implementation with the local ensemble transform. Monthly Weather Review 139: 1519–35. doi: 10.1175/2010mwr3570.1
|
[30] | Anderson JL, Anderson SL (2011) A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. American Meterological Society 127: 2741–58. doi: 10.1175/1520-0493(1999)127<2741:amciot>2.0.co;2
|
[31] | Mehra R (1970) On the identification of variances and adaptiveKalman filtering. IEEE Transactions on Automatic Control 15: 175–184. doi: 10.1109/tac.1970.1099422
|
[32] | Mohamed AH (1999) Schwarz (1999) Adaptive Kalman filtering for INS/GPS. Journal of Geodesy 73: 193–203. doi: 10.1007/s001900050236
|
[33] | Wang J (2000) Stochastic modeling for real-time kinematic GPS/GLONASS position. Navigation 46: 297–305.
|
[34] | Korniyenko OV, Sharawi MS, Aloi DN (2005) Neural network based approach for tuning KALMAN filter. In: Electro Information Technology, 2005 IEEE International Conference on. pp 1–5.
|
[35] | Odelson BJ, Lutz A, Rawlings JB (2006) The autocovariance least-squares method for estimating covariances: application to model-based control of chemical reactors. IEEE Transactions on Control Systems Technology 14: 532–540. doi: 10.1109/tcst.2005.860519
|
[36] | Akesson BM, Jrgensen JB, Poulsen NK, Jrgensen SB (2008) A generalized autocovariance leastsquares method for Kalman filter tuning. Journal of Process Control 18: 769–779. doi: 10.1016/j.jprocont.2007.11.003
|
[37] | Jatoth RK, Kumar TK (2009) Particle swarm optimization based tuning of unscented Kalman filter for bearings only tracking. In: Advances in Recent Technologies in Communication and Computing, 2009. ARTCom '09. International Conference on. pp 444–448.
|
[38] | Rajamani MR, Rawlings JB (2009) Estimation of the disturbance structure from data using semidefinite programming and optimal weighting. Automatica 45: 142–148. doi: 10.1016/j.automatica.2008.05.032
|
[39] | Deng B, Wang J, Che Y (2009) A combined method to estimate parameters of neuron from a heavily noise-corrupted time series of active potential. Chaos 19: 015105. doi: 10.1063/1.3092907
|
[40] | van Domselaar B, Hemkar P (1975) Nonlinear parameter estimation in initial value problems. Technical report. Mathematical Centre Amsterdam.
|
[41] | Kalman RE (1960) On the general theory of control systems. Proc IFAC 1st International Congress 1: 481–92.
|
[42] | Letellier C, Aguirre LA (2002) Investigating nonlinear dynamics from time series: The inuence of symmetries and the choice of observables. Chaos 12: 549–558. doi: 10.1063/1.1487570
|
[43] | Hu X, Nenov V, Bergsneider M, Glenn TC, Vespa P, et al. (2007) Estimation of hidden state variables of the intracranial system using constrained nonlinear Kalman filters. IEEE transactions on Bio-Medical Engineering 54: 597–610. doi: 10.1109/tbme.2006.890130
|
[44] | Quach M, Brunel N, D'Alché-Buc F (2007) Estimating parameters and hidden variables in nonlinear state-space models based on ODEs for biological networks inference. Bioinformatics 23: 3209–16. doi: 10.1093/bioinformatics/btm510
|
[45] | Eberle C, Ament C (2010) The unscented Kalman filter estimates the plasma insulin from glucose measurement. Bio Systems 103: 67–72. doi: 10.1016/j.biosystems.2010.09.012
|
[46] | Ullah G, Schiff SJ (2010) Assimilating seizure dynamics. PLoS Computational Biology 6: e1000776. doi: 10.1371/journal.pcbi.1000776
|
[47] | Schiff SJ (2010) Towards model-based control of Parkinson's disease. Philos Transact A Math Phys Eng Sci 368: 2269–308.
|
[48] | Freestone DR, Aram P, Dewar M, Scerri K, Grayden DB, et al. (2011) A data-driven framework for neural field modeling. Neuro Image 56: 1043–58. doi: 10.1016/j.neuroimage.2011.02.027
|
[49] | Toth B, Kostuk M, Meliza C, Margoliash D, Abarbanel H (2006) Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105: 1–21. doi: 10.1007/s00422-011-0459-1
|
[50] | Letellier C, Aguirre L (2010) Interplay between synchronization, observability, and dynamics. Phys Rev E 82: 1–11. doi: 10.1103/physreve.82.016204
|
[51] | Letellier C, Aguirre LA, Maquet J (2005) Relation between observability and differential embeddings for nonlinear dynamics. Phys Rev E 71: 066213. doi: 10.1103/physreve.71.066213
|
[52] | Letellier C, Aguirre L (2009) Symbolic observability coefficients for univariate and multivariate analysis. Phys Rev E 79: 066210. doi: 10.1103/physreve.79.066210
|
[53] | Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64: 821–824. doi: 10.1103/physrevlett.64.821
|
[54] | Parlitz U (1996) Estimating model parameters from time series by autosynchronization. Phys Rev Lett 76: 1232–1235. doi: 10.1103/physrevlett.76.1232
|
[55] | Maybhate A, Amritkar RE (1999) Use of synchronization and adaptive control in parameter estimation from a time series. Phys Rev E 59: 284–293. doi: 10.1103/physreve.59.284
|
[56] | Konnur R (2003) Synchronization-based approach for estimating all model parameters of chaotic systems. Phys Rev E 67: 027204. doi: 10.1103/physreve.67.027204
|
[57] | Huang D (2004) Synchronization-based estimation of all parameters of chaotic systems from time series. Phys Rev E 69: 6–9. doi: 10.1103/physreve.69.067201
|
[58] | Abarbanel HDI, Creveling DR, Jeanne JM (2008) Estimation of parameters in nonlinear systems using balanced synchronization. Phys Rev E 77: 016208. doi: 10.1103/physreve.77.016208
|
[59] | Vaida F (2005) Parameter convergence for EM and MM algorithms. Statistica Sinica 15: 831–840.
|
[60] | Wu JCF (1983) On the convergence properties of theEM algorithm. The Annals of Statistics 11: 95–103. doi: 10.1214/aos/1176346060
|
[61] | Jacquez JA, Greif P (1985) Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design. Mathematical Biosciences 77: 201–227. doi: 10.1016/0025-5564(85)90098-7
|
[62] | Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, et al. (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25: 1923–9. doi: 10.1093/bioinformatics/btp358
|
[63] | Raue A, Becker V, Klingmüller U, Timmer J (2010) Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos 20: 045105. doi: 10.1063/1.3528102
|
[64] | Raue A, Kreutz C, Maiwald T, Klingmuller U, Timmer J (2011) Addressing parameter identifiability by model-based experimentation. IET Systems Biology 5: 120. doi: 10.1049/iet-syb.2010.0061
|
[65] | Margaria G, Riccomagno E, White LJ (2004) Structural identifiability analysis of some highly structured families of statespace models using differential algebra. J Math Biol 49: 433–454. doi: 10.1007/s00285-003-0261-3
|
[66] | Sunderam S, Chernyy N, Peixoto N, Mason JP, Weinstein SL, et al. (2007) Improved sleep-wake and behavior discrimination using MEMS accelerometers. Journal of Neuroscience Methods 163: 373–83. doi: 10.1016/j.jneumeth.2007.03.007
|
[67] | Michael AC, Borland LM, editors (2007) Electrochemical Methods for Neuroscience, CRC Press, chapter 19.
|