[1] | Dobson CM (1999) Protein Misfolding, Evolution and Disease. Trends in biochemical sciences 24: 329–332. doi: 10.1016/s0968-0004(99)01445-0
|
[2] | Zerovnik E (2002) Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. The FEBS journal 269: 3362–3371. doi: 10.1046/j.1432-1033.2002.03024.x
|
[3] | Miranker AD (2004) Unzipping the mysteries of amyloid fiber formation. Proceedings of the National Academy of Sciences of the United States of America 101: 4335–4336. doi: 10.1073/pnas.0401163101
|
[4] | Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nature medicine 10: S10–S17. doi: 10.1038/nm1066
|
[5] | Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Biochemistry 75: 333–366. doi: 10.1146/annurev.biochem.75.101304.123901
|
[6] | Malisauskas M, Darinskas A, Zamotin VV, Gharibyan A, Kostanyan IA, et al. (2006) Intermediate amyloid oligomers of lysozyme: Is their cytotoxicity a particular case or general rule for amyloid? Biochemistry Biokhimiia 71: 505–512. doi: 10.1134/s0006297906050063
|
[7] | Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature reviews Molecular cell biology 8: 101–112. doi: 10.1038/nrm2101
|
[8] | Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, et al. (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nature structural & molecular biology 15: 558–566. doi: 10.1038/nsmb.1437
|
[9] | Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, et al. (2003) Amyloid beta –protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proceedings of the National Academy of Sciences of the United States of America 100: 330–335. doi: 10.1073/pnas.222681699
|
[10] | Goldsbury C, Frey P, Olivieri V, Aebi U, Muller S (2005) Multiple assembly pathways underlie amyloid-β fibril polymorphisms. Journal of molecular biology 352: 282–298. doi: 10.1016/j.jmb.2005.07.029
|
[11] | Benseny-Cases N, Cócera M, Cladera J (2007) Conversion of non-fibrillar β-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation. Biochemical and biophysical research communications 361: 916–921. doi: 10.1016/j.bbrc.2007.07.082
|
[12] | Nguyen HD, Hall CK (2004) Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proceedings of the National Academy of Sciences of the United States of America 101: 16180–16185. doi: 10.1073/pnas.0407273101
|
[13] | Auer S, Dobson CM, Vendruscolo M (2007) Characterization of the nucleation barriers for protein aggregation and amyloid formation. HFSP journal 1: 137–146. doi: 10.2976/1.2760023
|
[14] | Auer S, Meersman F, Dobson CM, Vendruscolo M (2008) A generic mechanism of emergence of amyloid proto_laments from disordered oligomeric aggregates. PLoS Computational Biology 4: e1000222. doi: 10.1371/journal.pcbi.1000222
|
[15] | Auer S, Dobson CM, Vendruscolo M, Maritan A (2008) Self-templated nucleation in peptide and protein aggregation. Physical review letters 101: 258101–258101. doi: 10.1103/physrevlett.101.258101
|
[16] | Cheon M, Chang I, Hall CK (2011) Spontaneous formation of twisted aβ(16–22) fibrils in largescale molecular-dynamics simulations. Biophysical journal 101: 2493–2501. doi: 10.1016/j.bpj.2011.08.042
|
[17] | Matthes D, Gapsys V, de Groot BL (2012, in press) Driving Forces and Structural Determinants of Steric Zipper Peptide Oligomer Formation Elucidated by Atomistic Simulations. Journal of molecular biology 421: 390–416. doi: 10.1016/j.jmb.2012.02.004
|
[18] | Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, et al. (2005) Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 307: 262–265. doi: 10.1126/science.1105850
|
[19] | Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Current opinion in structural biology 16: 260–265. doi: 10.1016/j.sbi.2006.03.007
|
[20] | F?ndrich M, Meinhardt J, Grigorieff N (2009) Structural polymorphism of Alzheimer Abeta and other amyloid fibrils. Prion 3: 89–93. doi: 10.4161/pri.3.2.8859
|
[21] | Pellarin R (2010) Amyloid Fibril Polymorphism Is under Kinetic Control. Journal of the American Chemical Society 132: 14960–14970. doi: 10.1021/ja106044u
|
[22] | Morel B, Varela L, Azuaga AI, Conejero-Lara F (2010) Environmental Conditions Affect the Kinetics of Nucleation of Amyloid Fibrils and Determine Their Morphology. Biophysical journal 99: 3801–3810. doi: 10.1016/j.bpj.2010.10.039
|
[23] | Nasica-Labouze J, Mousseau N (2012) Kinetics of Amyloid Growth, Alzheimers disease: Molecular Basis of Amyloid-beta protein aggregation and fibril formation -Insights into low molecular weight and cytotoxic aggregates from computer simulations. Imperial Press College. In press.
|
[24] | Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fandrich M (2005) The aggregation kinetics of Alzheimer's β-amyloid peptide is controlled by stochastic nucleation. Protein science : a publication of the Protein Society 14: 1753–1759. doi: 10.1110/ps.041266605
|
[25] | Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization: Ii. a double nucleation mechanism. Journal of Molecular Biology 183: 611–631. doi: 10.1016/0022-2836(85)90175-5
|
[26] | Jarrett JT, Lansbury PT (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055–1058. doi: 10.1016/0092-8674(93)90635-4
|
[27] | Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proceedings of the National Academy of Sciences of the United States of America 93: 1125–1129. doi: 10.1073/pnas.93.3.1125
|
[28] | Ban T, Yamaguchi K, Goto Y (2006) Direct observation of amyloid fibril growth, propagation, and adaptation. Accounts of chemical research 39: 663–670. doi: 10.1021/ar050074l
|
[29] | Liang Y, Lynn DG, Berland KM (2010) Direct observation of nucleation and growth in amyloid self-assembly. JACS communications 132: 6306–6308. doi: 10.1021/ja910964c
|
[30] | Knowles TPJ, White DA, Abate AR, Agresti JJ, Cohen SIA, et al. (2011) Observation of spatial propagation of amyloid assembly from single nuclei. Proceedings of the National Academy of Sciences of the United States of America 108: 14746–14751. doi: 10.1073/pnas.1105555108
|
[31] | Tessier PM, Lindquist S (2007) Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447: 556–561. doi: 10.1038/nature05848
|
[32] | Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proceedings of the National Academy of Sciences of the United States of America 98: 2375–2380. doi: 10.1073/pnas.041617698
|
[33] | Nelson R, Sawaya MR, Balbirnie M, Madsen A?, Riekel C, et al. (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435: 773–778. doi: 10.1038/nature03680
|
[34] | Strodel B, Whittleston CS, Wales DJ (2007) Thermodynamics and kinetics of aggregation for the GNNQQNY peptide. Journal of the American Chemical Society 129: 16005–16014. doi: 10.1021/ja075346p
|
[35] | Zhang Z, Chen H, Bai H, Lai L (2007) Molecular dynamics simulations on the oligomer-formation process of the GNNQQNY peptide from yeast prion protein Sup35. Biophysical journal 93: 1484–1492. doi: 10.1529/biophysj.106.100537
|
[36] | Meli M, Morra G, Colombo G (2008) Investigating the mechanism of peptide aggregation: insights from mixed monte carlo-molecular dynamics simulations. Biophysical journal 94: 4414–4426. doi: 10.1529/biophysj.107.121061
|
[37] | Reddy AS, Chopra M, de Pablo JJ (2010) GNNQQNY-Investigation of Early Steps during Amyloid Formation. Biophysical journal 98: 1038–1045. doi: 10.1016/j.bpj.2009.10.057
|
[38] | Qi X, Hong L, Zhang Y (2012) A variational model for oligomer-formation process of GNNQQNY peptide from yeast prion protein Sup35. Biophysical journal 102: 597–605. doi: 10.1016/j.bpj.2011.12.036
|
[39] | Nasica-Labouze J, Meli M, Derreumaux P, Colombo G, Mousseau N (2011) A Multiscale Approach to Characterize the Early Aggregation Steps of the Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35. PLoS Computational Biology 7: e1002051. doi: 10.1371/journal.pcbi.1002051
|
[40] | Maupetit J, Tuffery P, Derreumaux P (2007) A coarse-grained protein force field for folding and structure prediction. Proteins: Structure, Function, and Bioinformatics 69: 394–408. doi: 10.1002/prot.21505
|
[41] | Derreumaux P, Mousseau N (2007) Coarse-grained protein molecular dynamics simulations. The Journal of chemical physics 126: 025101–025101. doi: 10.1063/1.2408414
|
[42] | Derreumaux P (1999) From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential. The Journal of chemical physics 111: 2301–2310. doi: 10.1063/1.479501
|
[43] | Derreumaux P (2000) Generating Ensemble Averages for Small Proteins from Extended Conformations by Monte Carlo Simulations. Physical review letters 85: 206–209. doi: 10.1103/physrevlett.85.206
|
[44] | Forcellino F, Derreumaux P (2001) Computer simulations aimed at structure prediction of supersecondary motifs in proteins. Proteins: Structure, Function, and Bioinformatics 45: 159–166. doi: 10.1002/prot.1135
|
[45] | Derreumaux P (2001) Evidence that the 127–164 region of prion proteins has two equi-energetic conformations with beta or alpha features. Biophysical journal 81: 1657–1665. doi: 10.1016/s0006-3495(01)75819-5
|
[46] | Derreumaux P (2002) Insight into protein topology from Monte Carlo simulations. The Journal of chemical physics 117: 3499–3503. doi: 10.1063/1.1494427
|
[47] | Mousseau N, Derreumaux P, Barkema GT, Malek R (2001) Sampling activated mechanisms in proteins with the activation-relaxation technique. Journal of molecular graphics & modelling 19: 78–86. doi: 10.1016/s1093-3263(00)00134-0
|
[48] | Wei G, Derreumaux P, Mousseau N (2003) Sampling the complex energy landscape of a simple β-hairpin. The Journal of chemical physics 119: 6403–6406. doi: 10.1063/1.1613642
|
[49] | Wei G, Mousseau N, Derreumaux P (2004) Complex folding pathways in a simple β-hairpin. Proteins: Structure, Function, and Bioinformatics 56: 464–474. doi: 10.1002/prot.20127
|
[50] | Wei G, Mousseau N, Derreumaux P (2004) Sampling the self-assembly pathways of KFFE hexamers. Biophysical journal 87: 3648–3656. doi: 10.1529/biophysj.104.047688
|
[51] | Mousseau N, Derreumaux P (2005) Exploring the Early Steps of Amyloid Peptide Aggregation by Computers. Accounts of chemical research 38: 885–891. doi: 10.1021/ar050045a
|
[52] | Dupuis L, Mousseau N (2012) Understanding the EF-hand closing pathway using non-biased interatomic potentials. The Journal of chemical physics 136: 035101. doi: 10.1063/1.3671986
|
[53] | Derreumaux P, Mousseau N (2007) Coarse-grained protein molecular dynamics simulations. The Journal of chemical physics 126: 025101. doi: 10.1063/1.2408414
|
[54] | Song W, Wei G, Mousseau N, Derreumaux P (2008) Self-assembly of the beta2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a beta-barrel species. The journal of physical chemistry B 112: 4410–4418. doi: 10.1021/jp710592v
|
[55] | Lu Y, Derreumaux P, Guo Z, Mousseau N, Wei G (2009) Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins: Structure, Function, and Bioinformatics 75: 954–963. doi: 10.1002/prot.22305
|
[56] | Chebaro Y, Dong X, Laghaei R, Derreumaux P, Mousseau N (2009) Replica Exchange Molecular Dynamics Simulations of Coarse-grained Proteins in Implicit Solvent. The journal of physical chemistry B 113: 267–274. doi: 10.1021/jp805309e
|
[57] | Laghaei R, Mousseau N, Wei G (2010) Effect of the disulfide bond on the monomeric structure of human amylin studied by combined Hamiltonian and temperature replica exchange molecular dynamics simulations. The journal of physical chemistry B 114: 7071–7077. doi: 10.1021/jp100205w
|
[58] | C?té S, Derreumaux P, Mousseau N (2011) Distinct Morphologies for Amyloid Beta Protein Monomer: Aβ 1–40, Aβ 1–42, and Aβ 1{40(D23N). Journal of Chemical Theory and Computation 7: 2584–2592. doi: 10.1021/ct1006967
|
[59] | C?té S, Laghaei R, Derreumaux P, Mousseau N (2012) Distinct Dimerization for Various Alloforms of the Amyloid-Beta Protein: Aβ 1–40, Aβ 1–42, and Aβ 1–40(D23N). The journal of physical chemistry B 116: 4043–4055. doi: 10.1021/jp2126366
|
[60] | Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. The Journal of chemical physics 81: 3684–3690. doi: 10.1063/1.448118
|
[61] | Lanczos C (1988) Applied analysis. Dover Publications. 576 p.
|
[62] | Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637. doi: 10.1002/bip.360221211
|
[63] | Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Advances in Protein Chemistry 23: 283–438. doi: 10.1016/s0065-3233(08)60402-7
|
[64] | Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins: Structure, Function, and Bioinformatics 23: 566–579. doi: 10.1002/prot.340230412
|
[65] | Serio TR (2000) Nucleated Conformational Conversion and the Replication of Conformational Information by a Prion Determinant. Science 289: 1317–1321. doi: 10.1126/science.289.5483.1317
|
[66] | Cheon M, Chang I, Mohanty S, Luheshi LM, Dobson CM, et al. (2007) Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Computational Biology 3: 1727–1738. doi: 10.1371/journal.pcbi.0030173
|
[67] | Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, et al. (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447: 453–457. doi: 10.1038/nature05695
|
[68] | van der Wel PCA, Lewandowski JR, Griffin RG (2010) Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR. Biochemistry 49: 9457–9469. doi: 10.1021/bi100077x
|
[69] | Vitagliano L, Esposito L, Pedone C, De Simone A (2008) Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular dynamics: antiparallel versus parallel association. Biochemical and biophysical research communications 377: 1036–1041. doi: 10.1016/j.bbrc.2008.10.039
|
[70] | Park J, Kahng B, Hwang W (2009) Thermodynamic selection of steric zipper patterns in the amyloid cross-beta spine. PLoS Computational Biology 5: e1000492. doi: 10.1371/journal.pcbi.1000492
|
[71] | S?rensen J, Periole X, Skeby KK, Marrink SJ, Schi?tt B (2011) Protofibrillar Assembly Toward the Formation of Amyloid Fibrils. The Journal of Physical Chemistry Letters 2: 2385–2390. doi: 10.1021/jz2010094
|
[72] | Gosal WS, Morten IJ, Hewitt EW, Smith DA, Thomson NH, et al. (2005) Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid. Journal of molecular biology 351: 850–864. doi: 10.1016/j.jmb.2005.06.040
|
[73] | Bhak G, Choe YJ, Paik SR (2009) Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation. BMB reports 42: 541–551. doi: 10.5483/bmbrep.2009.42.9.541
|
[74] | Hofrichter J, Ross PD, Eaton WA (1974) Kinetics and Mechanism of Deoxyhemoglobin S Gelation: A New Approach to Understanding Sickle Cell Disease. Proceedings of the National Academy of Sciences of the United States of America 71: 4864–4868. doi: 10.1073/pnas.71.12.4864
|
[75] | DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93: 1241–1252. doi: 10.1016/s0092-8674(00)81467-1
|
[76] | Padrick SB, Miranker AD (2002) Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 41: 4694–4703. doi: 10.1021/bi0160462
|
[77] | Ferguson N, Berriman J, Petrovich M, Sharpe TD, Finch JT, et al. (2003) Rapid amyloid fiber formation from the fast-folding WW domain FBP28. Proceedings of the National Academy of Sciences of the United States of America 100: 9814–9819. doi: 10.1073/pnas.1333907100
|
[78] | Collins SR, Douglass A, Vale RD, Weissman JS (2004) PLoS Biology: Mechanism of Prion Propagation: Amyloid Growth Occurs by Monomer Addition. PLoS biology 2: e321. doi: 10.1371/journal.pbio.0020321
|
[79] | Xue WF, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proceedings of the National Academy of Sciences of the United States of America 105: 8926–8931. doi: 10.1073/pnas.0711664105
|
[80] | Sorci M, Grassucci RA, Hahn I, Frank J, Belfort G (2009) Time-dependent insulin oligomer reaction pathway prior to fibril formation: Cooling and seeding. Proteins: Structure, Function, and Bioinformatics 77: 62–73. doi: 10.1002/prot.22417
|
[81] | Foderà V, Cataldo S, Librizzi F, Pignataro B, Spiccia P, et al. (2009) Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation. The journal of physical chemistry B 113: 10830–10837. doi: 10.1021/jp810972y
|
[82] | Flyvbjerg H, Jobs E, Leibler S (1996) Kinetics of self-assembling microtubules: an “inverse problem” in biochemistry. Proceedings of the National Academy of Sciences of the United States of America 93: 5975–5979. doi: 10.1073/pnas.93.12.5975
|
[83] | Kunes KC, Cox DL, Singh RRP (2005) One-dimensional model of yeast prion aggregation. Physical Review E 72: 051915–051915. doi: 10.1103/physreve.72.051915
|
[84] | Zhang J, Muthukumar M (2009) Simulations of nucleation and elongation of amyloid fibrils. The Journal of chemical physics 130: 035102. doi: 10.1063/1.3050295
|
[85] | Linse B, Linse S (2011) Monte Carlo simulations of protein amyloid formation reveal origin of sigmoidal aggregation kinetics. Molecular bioSystems 7: 2296–2303. doi: 10.1039/c0mb00321b
|
[86] | Jarrett JT, Berger EP, Lansbury PT (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32: 4693–4697. doi: 10.1021/bi00069a001
|
[87] | Arvinte T, Cudd A, Drake A (1993) The structure and mechanism of formation of human calcitonin fibrils. Journal of Biological Chemistry 268: 6415–6422.
|
[88] | Han H, Weinreb PH, Lansbury PT (1995) The core Alzheimer's peptide NAC forms amyloid fibrils which seed and are seeded by beta-amyloid: is NAC a common trigger or target in neurodegenerative disease? Chemistry & biology 2: 163–169. doi: 10.1016/1074-5521(95)90071-3
|
[89] | Chen S, Berthelier V, Hamilton JB, O'Nuallai B, Wetzel R (2002) Amyloid-like Features of Polyglutamine Aggregates and Their Assembly Kinetics. Biochemistry 41: 7391–7399. doi: 10.1021/bi011772q
|
[90] | Ferguson N, Berriman J, Petrovich M, Sharpe TD, Finch JT, et al. (2003) Rapid amyloid fiber formation from the fast-folding WW domain FBP28. Proceedings of the National Academy of Sciences of the United States of America 100: 9814–9819. doi: 10.1073/pnas.1333907100
|
[91] | Grossier R, Veesler S (2009) Reaching One Single and Stable Critical Cluster through Finite-Sized Systems. Crystal Growth & Design 9: 1917–1922. doi: 10.1021/cg801165b
|
[92] | Wedekind J, Reguera D, Strey R (2006) Finite-size effects in simulations of nucleation. The Journal of chemical physics 125: 214505. doi: 10.1063/1.2402167
|
[93] | Oosawa F, Kasai M (1962) A theory of linear and helical aggregations of macromolecules. Journal of molecular biology 4: 10–21. doi: 10.1016/s0022-2836(62)80112-0
|
[94] | Wegner A, Engel J (1975) Kinetics of the cooperative association of actin to actin filaments. Biophysical Chemistry 3: 215–225. doi: 10.1016/0301-4622(75)80013-5
|
[95] | Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, et al. (2000) Alzheimer's Disease Amyloid Propagation by a Template-Dependent Dock-Lock Mechanism . Biochemistry 39: 6288–6295. doi: 10.1021/bi992933h
|
[96] | Cannon MJ, Williams AD, Wetzel R, Myszka DG (2004) Kinetic analysis of beta-amyloid fibril elongation. Analytical biochemistry 328: 67–75. doi: 10.1016/j.ab.2004.01.014
|
[97] | Rochet JC, Lansbury PT (2000) Amyloid fibrillogenesis: themes and variations. Current opinion in structural biology 10: 60–68. doi: 10.1016/s0959-440x(99)00049-4
|
[98] | Fink AL (2006) The Aggregation and Fibrillation of α-Synuclein. Accounts of chemical research 39: 628–634. doi: 10.1021/ar050073t
|
[99] | Modler AJ, Gast K, Lutsch G, Damaschun G (2003) Assembly of amyloid protofibrils via critical oligomers–a novel pathway of amyloid formation. Journal of molecular biology 325: 135–148. doi: 10.1016/s0022-2836(02)01175-0
|
[100] | Hill SE, Robinson J, Matthews G, Muschol M (2009) Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion. Biophysical journal 96: 3781–3790. doi: 10.1016/j.bpj.2009.01.044
|
[101] | Xu S, Bevis B, Arnsdorf M (2001) The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? Biophysical journal 81: 446–454. doi: 10.1016/s0006-3495(01)75712-8
|
[102] | Zhang R, Hu X, Khant H, Ludtke SJ, Chiu W, et al. (2009) Interprotofilament interactions between alzheimer's aβ1–42 peptides in amyloid fibrils revealed by cryoem. Proc Natl Acad Sci USA 106: 4653–4658. doi: 10.1073/pnas.0901085106
|
[103] | Miller Y, Ma B, Tsai CJ, Nussinov R (2010) Hollow core of alzheimer's aβ42 amyloid observed by cryoem is relevant at physiological ph. Proc Natl Acad Sci USA 107: 14128–14133. doi: 10.1073/pnas.1004704107
|