[1] | Morgan DO (2007) The Cell Cycle: Principles of Control. Corby: Oxford University Press.
|
[2] | McAdams HH, Shapiro L (2003) A bacterial cell-cycle regulatory network operating in time and space. Science 301: 1874–1877. doi: 10.1126/science.1087694
|
[3] | Murray AW (2004) Recycling the Cell Cycle: Cyclins Revisited. Cell 116: 221–234. doi: 10.1016/s0092-8674(03)01080-8
|
[4] | Lu Y, Cross FR (2010) Periodic Cyclin-Cdk Activity Entrains an Autonomous Cdc14 Release Oscillator. Cell 141: 268–279. doi: 10.1016/j.cell.2010.03.021
|
[5] | Jonas K, Chen YE, Laub MT (2011) Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication. Curr Biol 21: 1092–1101. doi: 10.1016/j.cub.2011.05.040
|
[6] | Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT (1998) Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc Natl Acad Sci U S A 95: 120–125. doi: 10.1073/pnas.95.1.120
|
[7] | Din N, Quardokus EM, Sackett MJ, Brun YV (1998) Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol Microbiol 27: 1051–1063. doi: 10.1046/j.1365-2958.1998.00752.x
|
[8] | Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH (2006) Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site. Cell 124: 1025–1037. doi: 10.1016/j.cell.2006.01.019
|
[9] | Poggio S, Takacs CN, Vollmer W, Jacobs-Wagner C (2010) A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains. Mol Microbiol 77: 74–89. doi: 10.1111/j.1365-2958.2010.07223.x
|
[10] | Haase SB, Reed SI (1999) Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle. Nature 401: 394–397. doi: 10.1038/43927
|
[11] | Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, et al. (2008) Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453: 944–947. doi: 10.1038/nature06955
|
[12] | Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, et al. (1995) Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 130: 105–115. doi: 10.1083/jcb.130.1.105
|
[13] | Manzoni R, Montani F, Visintin C, Caudron F, Ciliberto A, et al. (2010) Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit. J Cell Biol 190: 209–222. doi: 10.1083/jcb.201002026
|
[14] | Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402: C47–52. doi: 10.1038/35011540
|
[15] | Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Berlin; New York: Springer.
|
[16] | Mukamel S (1999) Principles of Nonlinear Optical Spectroscopy. Oxford University Press.
|
[17] | Laub MT, Shapiro L, McAdams HH (2007) Systems biology of Caulobacter. Annu Rev Genet 41: 429–441. doi: 10.1146/annurev.genet.41.110306.130346
|
[18] | Shen X, Collier J, Dill D, Shapiro L, Horowitz M, et al. (2008) Architecture and inherent robustness of a bacterial cell-cycle control system. Proc Natl Acad Sci U S A 105: 11340–11345. doi: 10.1073/pnas.0805258105
|
[19] | Li S, Brazhnik P, Sobral B, Tyson JJ (2009) Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus. PLoS Comput Biol 5: e1000463. doi: 10.1371/journal.pcbi.1000463
|
[20] | Lin Y, Crosson S, Scherer NF (2010) Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion. Mol Syst Biol 6: 445. doi: 10.1038/msb.2010.95
|
[21] | Laub MT, Chen SL, Shapiro L, McAdams HH (2002) Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A 99: 4632–4637. doi: 10.1073/pnas.062065699
|
[22] | Brown PJ, Hardy GG, Trimble MJ, Brun YV (2009) Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 54: 1–101. doi: 10.1016/s0065-2911(08)00001-5
|
[23] | Siegal-Gaskins D, Crosson S (2008) Tightly regulated and heritable division control in single bacterial cells. Biophys J 95: 2063–2072. doi: 10.1529/biophysj.108.128785
|
[24] | Domian IJ, Quon KC, Shapiro L (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90: 415–424. doi: 10.1016/s0092-8674(00)80502-4
|
[25] | Jacobs C, Ausmees N, Cordwell SJ, Shapiro L, Laub MT (2003) Functions of the CckA histidine kinase in Caulobacter cell cycle control. Mol Microbiol 47: 1279–1290. doi: 10.1046/j.1365-2958.2003.03379.x
|
[26] | Marks ME, Castro-Rojas CM, Teiling C, Du L, Kapatral V, et al. (2010) The Genetic Basis of Laboratory Adaptation in Caulobacter crescentus. J Bacteriol 192: 3678–3688. doi: 10.1128/jb.00255-10
|
[27] | Campbell A (1957) Synchronization of cell division. Bacteriol Rev 21: 263–272.
|
[28] | Mondragon-Palomino O, Danino T, Selimkhanov J, Tsimring L, Hasty J (2011) Entrainment of a Population of Synthetic Genetic Oscillators. Science 333: 1315–1319. doi: 10.1126/science.1205369
|
[29] | Jacobs C, Domian IJ, Maddock JR, Shapiro L (1999) Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97: 111–120. doi: 10.1016/s0092-8674(00)80719-9
|
[30] | Chen YE, Tropini C, Jonas K, Tsokos CG, Huang KC, et al. (2011) Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. Proc Natl Acad Sci U S A 108: 1052–1057. doi: 10.1073/pnas.1015397108
|
[31] | Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, et al. (1998) Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography. Phys Rev Lett 81: 3291. doi: 10.1103/physrevlett.81.3291
|
[32] | Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16: 15–42. doi: 10.1016/0022-5193(67)90051-3
|
[33] | Holtzendorff J, Hung D, Brende P, Reisenauer A, Viollier PH, et al. (2004) Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304: 983–987. doi: 10.1126/science.1095191
|
[34] | Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15: 221–231. doi: 10.1016/s0955-0674(03)00017-6
|
[35] | Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9: 981–991. doi: 10.1038/nrm2530
|
[36] | Martin ME, Trimble MJ, Brun YV (2004) Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus. Mol Microbiol 54: 60–74. doi: 10.1111/j.1365-2958.2004.04251.x
|
[37] | Kelly AJ, Sackett MJ, Din N, Quardokus E, Brun YV (1998) Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev 12: 880–893. doi: 10.1101/gad.12.6.880
|
[38] | Charvin G, Cross FR, Siggia ED (2009) Forced periodic expression of G1 cyclins phase-locks the budding yeast cell cycle. Proc Natl Acad Sci U S A 106: 6632–6637. doi: 10.1073/pnas.0809227106
|
[39] | Wang J, Xu L, Wang E (2008) Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations. Proc Natl Acad Sci U S A 105: 12271–12276. doi: 10.1073/pnas.0800579105
|
[40] | Wang J, Li C, Wang E (2010) Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. Proc Natl Acad Sci U S A 107: 8195–8200. doi: 10.1073/pnas.0910331107
|
[41] | Dickson A, Tabei SMA, Dinner AR (2011) Entrainment of a driven oscillator as a dynamical phase transition. Phys Rev E 84: 061134. doi: 10.1103/physreve.84.061134
|
[42] | Qu X, Smith GJ, Lee KT, Sosnick TR, Pan T, et al. (2008) Single-molecule nonequilibrium periodic Mg2+-concentration jump experiments reveal details of the early folding pathways of a large RNA. Proc Natl Acad Sci U S A 105: 6602–6607. doi: 10.1073/pnas.0801436105
|
[43] | Li Y, Qu X, Ma A, Smith GJ, Scherer NF, et al. (2009) Models of single-molecule experiments with periodic perturbations reveal hidden dynamics in RNA folding. J Phys Chem B 113: 7579–7590. doi: 10.1021/jp900225q
|
[44] | Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci U S A 105: 7165–7170. doi: 10.1073/pnas.0710770105
|
[45] | Mettetal JT, Muzzey D, Gomez-Uribe C, van Oudenaarden A (2008) The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae. Science 319: 482–484. doi: 10.1126/science.1151582
|
[46] | Bennett MR, Pang WL, Ostroff NA, Baumgartner BL, Nayak S, et al. (2008) Metabolic gene regulation in a dynamically changing environment. Nature 454: 1119–1122. doi: 10.1038/nature07211
|
[47] | Warmflash A, Dinner AR (2008) Signatures of combinatorial regulation in intrinsic biological noise. Proc Natl Acad Sci U S A 105: 17262–17267. doi: 10.1073/pnas.0809314105
|
[48] | Maienschein-Cline M, Warmflash A, Dinner AR (2010) Defining cooperativity in gene regulation locally through intrinsic noise. IET Syst Biol 4: 379–392. doi: 10.1049/iet-syb.2009.0070
|
[49] | Jovic A, Howell B, Cote M, Wade SM, Mehta K, et al. (2010) Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway. PLoS Comput Biol 6: e1001040. doi: 10.1371/journal.pcbi.1001040
|
[50] | Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. New York: Oxford University Press.
|
[51] | Smith CS, Hinz A, Bodenmiller D, Larson DE, Brun YV (2003) Identification of genes required for synthesis of the adhesive holdfast in Caulobacter crescentus. J Bacteriol 185: 1432–1442. doi: 10.1128/jb.185.4.1432-1442.2003
|
[52] | Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70: 4974–4984. doi: 10.1021/ac980656z
|
[53] | Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Berlin: Springer.
|