全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phase Resetting Reveals Network Dynamics Underlying a Bacterial Cell Cycle

DOI: 10.1371/journal.pcbi.1002778

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

References

[1]  Morgan DO (2007) The Cell Cycle: Principles of Control. Corby: Oxford University Press.
[2]  McAdams HH, Shapiro L (2003) A bacterial cell-cycle regulatory network operating in time and space. Science 301: 1874–1877. doi: 10.1126/science.1087694
[3]  Murray AW (2004) Recycling the Cell Cycle: Cyclins Revisited. Cell 116: 221–234. doi: 10.1016/s0092-8674(03)01080-8
[4]  Lu Y, Cross FR (2010) Periodic Cyclin-Cdk Activity Entrains an Autonomous Cdc14 Release Oscillator. Cell 141: 268–279. doi: 10.1016/j.cell.2010.03.021
[5]  Jonas K, Chen YE, Laub MT (2011) Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication. Curr Biol 21: 1092–1101. doi: 10.1016/j.cub.2011.05.040
[6]  Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT (1998) Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc Natl Acad Sci U S A 95: 120–125. doi: 10.1073/pnas.95.1.120
[7]  Din N, Quardokus EM, Sackett MJ, Brun YV (1998) Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol Microbiol 27: 1051–1063. doi: 10.1046/j.1365-2958.1998.00752.x
[8]  Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH (2006) Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site. Cell 124: 1025–1037. doi: 10.1016/j.cell.2006.01.019
[9]  Poggio S, Takacs CN, Vollmer W, Jacobs-Wagner C (2010) A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains. Mol Microbiol 77: 74–89. doi: 10.1111/j.1365-2958.2010.07223.x
[10]  Haase SB, Reed SI (1999) Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle. Nature 401: 394–397. doi: 10.1038/43927
[11]  Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, et al. (2008) Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453: 944–947. doi: 10.1038/nature06955
[12]  Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, et al. (1995) Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 130: 105–115. doi: 10.1083/jcb.130.1.105
[13]  Manzoni R, Montani F, Visintin C, Caudron F, Ciliberto A, et al. (2010) Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit. J Cell Biol 190: 209–222. doi: 10.1083/jcb.201002026
[14]  Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402: C47–52. doi: 10.1038/35011540
[15]  Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Berlin; New York: Springer.
[16]  Mukamel S (1999) Principles of Nonlinear Optical Spectroscopy. Oxford University Press.
[17]  Laub MT, Shapiro L, McAdams HH (2007) Systems biology of Caulobacter. Annu Rev Genet 41: 429–441. doi: 10.1146/annurev.genet.41.110306.130346
[18]  Shen X, Collier J, Dill D, Shapiro L, Horowitz M, et al. (2008) Architecture and inherent robustness of a bacterial cell-cycle control system. Proc Natl Acad Sci U S A 105: 11340–11345. doi: 10.1073/pnas.0805258105
[19]  Li S, Brazhnik P, Sobral B, Tyson JJ (2009) Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus. PLoS Comput Biol 5: e1000463. doi: 10.1371/journal.pcbi.1000463
[20]  Lin Y, Crosson S, Scherer NF (2010) Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion. Mol Syst Biol 6: 445. doi: 10.1038/msb.2010.95
[21]  Laub MT, Chen SL, Shapiro L, McAdams HH (2002) Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A 99: 4632–4637. doi: 10.1073/pnas.062065699
[22]  Brown PJ, Hardy GG, Trimble MJ, Brun YV (2009) Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 54: 1–101. doi: 10.1016/s0065-2911(08)00001-5
[23]  Siegal-Gaskins D, Crosson S (2008) Tightly regulated and heritable division control in single bacterial cells. Biophys J 95: 2063–2072. doi: 10.1529/biophysj.108.128785
[24]  Domian IJ, Quon KC, Shapiro L (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90: 415–424. doi: 10.1016/s0092-8674(00)80502-4
[25]  Jacobs C, Ausmees N, Cordwell SJ, Shapiro L, Laub MT (2003) Functions of the CckA histidine kinase in Caulobacter cell cycle control. Mol Microbiol 47: 1279–1290. doi: 10.1046/j.1365-2958.2003.03379.x
[26]  Marks ME, Castro-Rojas CM, Teiling C, Du L, Kapatral V, et al. (2010) The Genetic Basis of Laboratory Adaptation in Caulobacter crescentus. J Bacteriol 192: 3678–3688. doi: 10.1128/jb.00255-10
[27]  Campbell A (1957) Synchronization of cell division. Bacteriol Rev 21: 263–272.
[28]  Mondragon-Palomino O, Danino T, Selimkhanov J, Tsimring L, Hasty J (2011) Entrainment of a Population of Synthetic Genetic Oscillators. Science 333: 1315–1319. doi: 10.1126/science.1205369
[29]  Jacobs C, Domian IJ, Maddock JR, Shapiro L (1999) Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97: 111–120. doi: 10.1016/s0092-8674(00)80719-9
[30]  Chen YE, Tropini C, Jonas K, Tsokos CG, Huang KC, et al. (2011) Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. Proc Natl Acad Sci U S A 108: 1052–1057. doi: 10.1073/pnas.1015397108
[31]  Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, et al. (1998) Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography. Phys Rev Lett 81: 3291. doi: 10.1103/physrevlett.81.3291
[32]  Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16: 15–42. doi: 10.1016/0022-5193(67)90051-3
[33]  Holtzendorff J, Hung D, Brende P, Reisenauer A, Viollier PH, et al. (2004) Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304: 983–987. doi: 10.1126/science.1095191
[34]  Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15: 221–231. doi: 10.1016/s0955-0674(03)00017-6
[35]  Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9: 981–991. doi: 10.1038/nrm2530
[36]  Martin ME, Trimble MJ, Brun YV (2004) Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus. Mol Microbiol 54: 60–74. doi: 10.1111/j.1365-2958.2004.04251.x
[37]  Kelly AJ, Sackett MJ, Din N, Quardokus E, Brun YV (1998) Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev 12: 880–893. doi: 10.1101/gad.12.6.880
[38]  Charvin G, Cross FR, Siggia ED (2009) Forced periodic expression of G1 cyclins phase-locks the budding yeast cell cycle. Proc Natl Acad Sci U S A 106: 6632–6637. doi: 10.1073/pnas.0809227106
[39]  Wang J, Xu L, Wang E (2008) Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations. Proc Natl Acad Sci U S A 105: 12271–12276. doi: 10.1073/pnas.0800579105
[40]  Wang J, Li C, Wang E (2010) Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. Proc Natl Acad Sci U S A 107: 8195–8200. doi: 10.1073/pnas.0910331107
[41]  Dickson A, Tabei SMA, Dinner AR (2011) Entrainment of a driven oscillator as a dynamical phase transition. Phys Rev E 84: 061134. doi: 10.1103/physreve.84.061134
[42]  Qu X, Smith GJ, Lee KT, Sosnick TR, Pan T, et al. (2008) Single-molecule nonequilibrium periodic Mg2+-concentration jump experiments reveal details of the early folding pathways of a large RNA. Proc Natl Acad Sci U S A 105: 6602–6607. doi: 10.1073/pnas.0801436105
[43]  Li Y, Qu X, Ma A, Smith GJ, Scherer NF, et al. (2009) Models of single-molecule experiments with periodic perturbations reveal hidden dynamics in RNA folding. J Phys Chem B 113: 7579–7590. doi: 10.1021/jp900225q
[44]  Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci U S A 105: 7165–7170. doi: 10.1073/pnas.0710770105
[45]  Mettetal JT, Muzzey D, Gomez-Uribe C, van Oudenaarden A (2008) The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae. Science 319: 482–484. doi: 10.1126/science.1151582
[46]  Bennett MR, Pang WL, Ostroff NA, Baumgartner BL, Nayak S, et al. (2008) Metabolic gene regulation in a dynamically changing environment. Nature 454: 1119–1122. doi: 10.1038/nature07211
[47]  Warmflash A, Dinner AR (2008) Signatures of combinatorial regulation in intrinsic biological noise. Proc Natl Acad Sci U S A 105: 17262–17267. doi: 10.1073/pnas.0809314105
[48]  Maienschein-Cline M, Warmflash A, Dinner AR (2010) Defining cooperativity in gene regulation locally through intrinsic noise. IET Syst Biol 4: 379–392. doi: 10.1049/iet-syb.2009.0070
[49]  Jovic A, Howell B, Cote M, Wade SM, Mehta K, et al. (2010) Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway. PLoS Comput Biol 6: e1001040. doi: 10.1371/journal.pcbi.1001040
[50]  Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. New York: Oxford University Press.
[51]  Smith CS, Hinz A, Bodenmiller D, Larson DE, Brun YV (2003) Identification of genes required for synthesis of the adhesive holdfast in Caulobacter crescentus. J Bacteriol 185: 1432–1442. doi: 10.1128/jb.185.4.1432-1442.2003
[52]  Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70: 4974–4984. doi: 10.1021/ac980656z
[53]  Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Berlin: Springer.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133