全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing

DOI: 10.1371/journal.pcbi.1002771

Full-Text   Cite this paper   Add to My Lib

Abstract:

Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.

References

[1]  Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27: 307–340. doi: 10.1146/annurev.neuro.27.070203.144247
[2]  Buhusi C, Meck W (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6: 755–765. doi: 10.1038/nrn1764
[3]  Miyazaki M, Nozaki D, Nakajima Y (2005) Testing bayesian models of human coincidence timing. Journal of neurophysiology 94: 395–399. doi: 10.1152/jn.01168.2004
[4]  Miyazaki M, Yamamoto S, Uchida S, Kitazawa S (2006) Bayesian calibration of simultaneity in tactile temporal order judgment. Nat Neurosci 9: 875–877. doi: 10.1038/nn1712
[5]  Hudson T, Maloney L, Landy M (2008) Optimal compensation for temporal uncertainty in movement planning. PLoS Comput Biol 4: e1000130. doi: 10.1371/journal.pcbi.1000130
[6]  Jazayeri M, Shadlen MN (2010) Temporal context calibrates interval timing. Nat Neurosci 13: 1020–1026. doi: 10.1038/nn.2590
[7]  Ahrens MB, Sahani M (2011) Observers exploit stochastic models of sensory change to help judge the passage of time. Curr Biol 21: 200–206. doi: 10.1016/j.cub.2010.12.043
[8]  Cicchini G, Arrighi R, Cecchetti L, Giusti M, Burr D (2012) Optimal encoding of interval timing in expert percussionists. J Neurosci 32: 1056–1060. doi: 10.1523/jneurosci.3411-11.2012
[9]  Eagleman DM (2008) Human time perception and its illusions. Curr Opin Neurobiol 18: 131–136. doi: 10.1016/j.conb.2008.06.002
[10]  Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7: 773–778. doi: 10.1038/nn1268
[11]  Stetson C, Cui X, Montague P, Eagleman D (2006) Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron 51: 651–659. doi: 10.1016/j.neuron.2006.08.006
[12]  Karmarkar UR, Buonomano DV (2007) Timing in the absence of clocks: encoding time in neural network states. Neuron 53: 427–438. doi: 10.1016/j.neuron.2007.01.006
[13]  Pariyadath V, Eagleman D (2007) The effect of predictability on subjective duration. PLoS One 2: e1264. doi: 10.1371/journal.pone.0001264
[14]  Kording K, Wolpert D (2006) Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10: 319–326. doi: 10.1016/j.tics.2006.05.003
[15]  Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427: 244–247. doi: 10.1038/nature02169
[16]  Tassinari H, Hudson T, Landy M (2006) Combining priors and noisy visual cues in a rapid pointing task. J Neurosci 26: 10154–10163. doi: 10.1523/jneurosci.2779-06.2006
[17]  Trommersh?user J, Maloney L, Landy M (2008) Decision making, movement planning and statistical decision theory. Trends Cogn Sci 12: 291–297. doi: 10.1016/j.tics.2008.04.010
[18]  Beierholm U, Quartz S, Shams L (2009) Bayesian priors are encoded independently from likelihoods in human multisensory perception. J Vis 9: 1–9. doi: 10.1167/9.5.23
[19]  Vilares I, Howard J, Fernandes H, Gottfried J, Kording K (2012) Differential representations of prior and likelihood uncertainty in the human brain. Curr Biol 22: 1641–1648. doi: 10.1016/j.cub.2012.07.010
[20]  Whiteley L, Sahani M (2008) Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes. J Vis 8: 1–15. doi: 10.1167/8.3.2
[21]  Mamassian P, Landy MS (2010) It's that time again. Nat Neurosci 13: 914–916. doi: 10.1038/nn0810-914
[22]  Salmoni A, Schmidt R, Walter C (1984) Knowledge of results and motor learning: a review and critical reappraisal. Psychol Bull 95: 355–386. doi: 10.1037//0033-2909.95.3.355
[23]  Blackwell J, Newell K (1996) The informational role of knowledge of results in motor learning. Acta Psychol (Amst) 92: 119–129. doi: 10.1016/0001-6918(95)00013-5
[24]  Girshick A, Landy M, Simoncelli E (2011) Cardinal rules: visual orientation perception reects knowledge of environmental statistics. Nat Neurosci 14: 926–932. doi: 10.1038/nn.2831
[25]  Rakitin B, Gibbon J, Penney T, Malapani C, Hinton S, et al. (1998) Scalar expectancy theory and peak-interval timing in humans. J Exp Psychol Anim Behav Process 24: 15–33. doi: 10.1037/0097-7403.24.1.15
[26]  Jones MR, McAuley JD (2005) Time judgments in global temporal contexts. Percept Psychophys 67: 398–417. doi: 10.3758/bf03193320
[27]  Lawrence R (2011) Temporal context affects duration reproduction. J Cogn Psychol 23: 157–170. doi: 10.1080/20445911.2011.477812
[28]  Haggard P, Clark S, Kalogeras J (2002) Voluntary action and conscious awareness. Nat Neurosci 5: 382–385. doi: 10.1038/nn827
[29]  Heron J, Hanson JVM, Whitaker D (2009) Effect before cause: supramodal recalibration of sensorimotor timing. PLoS One 4: e7681. doi: 10.1371/journal.pone.0007681
[30]  Mates J, Müller U, Radil T, P?ppel E (1994) Temporal integration in sensorimotor synchronization. J Cogn Neurosci 6: 332–340. doi: 10.1162/jocn.1994.6.4.332
[31]  Heron J, Aaen-Stockdale C, Hotchkiss J, Roach N, McGraw P, et al. (2012) Duration channels mediate human time perception. Proc Biol Sci 279: 690–698. doi: 10.1098/rspb.2011.1131
[32]  Chalk M, Seitz A, Seriès P (2010) Rapidly learned stimulus expectations alter perception of motion. J Vis 10: 1–18. doi: 10.1167/10.8.2
[33]  Hollingworth H (1910) The central tendency of judgment. J Philos Psychol Sci Methods 7: 461–469. doi: 10.2307/2012819
[34]  Lewis PA, Miall RC (2009) The precision of temporal judgement: milliseconds, many minutes, and beyond. Proc Biol Sci 364: 1897–1905. doi: 10.1098/rstb.2009.0020
[35]  Battaglia PW, Kersten D, Schrater PR (2011) How haptic size sensations improve distance perception. PLoS Comput Biol 7: e1002080. doi: 10.1371/journal.pcbi.1002080
[36]  Stocker AA, Simoncelli EP (2006) Noise characteristics and prior expectations in human visual speed perception. Nat Neurosci 9: 578–585. doi: 10.1038/nn1669
[37]  Berniker M, Voss M, Kording K (2010) Learning priors for bayesian computations in the nervous system. PLoS One 5: e12686. doi: 10.1371/journal.pone.0012686
[38]  Sotiropoulos G, Seitz A, Seriès P (2011) Changing expectations about speed alters perceived motion direction. Curr Biol 21: R883–R884. doi: 10.1016/j.cub.2011.09.013
[39]  Turnham E, Braun D, Wolpert D (2011) Inferring visuomotor priors for sensorimotor learning. PLoS Comput Biol 7: e1001112. doi: 10.1371/journal.pcbi.1001112
[40]  Jones M, Love B (2011) Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behav Brain Sci 34: 169–188. doi: 10.1017/s0140525x10003134
[41]  Zhang H, Maloney L (2012) Ubiquitous log odds: a common representation of probability and frequency distortion in perception, action, and cognition. Front Neurosci 6 doi: 10.3389/fnins.2012.00001
[42]  Natarajan R, Murray I, Shams L, Zemel RS (2009) Characterizing response behavior in multisensory perception with conicting cues. Adv Neural Inf Process Syst 21: 1153–1160.
[43]  K?rding KP, Wolpert DM (2004) The loss function of sensorimotor learning. Proc Natl Acad Sci U S A 101: 9839–9842. doi: 10.1073/pnas.0308394101
[44]  Vroomen J, Keetels M, de Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cogn Brain Res 22: 32–35. doi: 10.1016/j.cogbrainres.2004.07.003
[45]  Vroomen J, Keetels M (2010) Perception of intersensory synchrony: a tutorial review. Atten Percept Psychophys 72: 871–884. doi: 10.3758/app.72.4.871
[46]  Di Luca M, Machulla Tk, Ernst MO (2009) Recalibration of multisensory simultaneity: cross-modal transfer coincides with a change in perceptual latency. J Vis 9: 1–16. doi: 10.1167/9.12.7
[47]  Roach N, Heron J, Whitaker D, McGraw P (2011) Asynchrony adaptation reveals neural population code for audio-visual timing. Proc Biol Sci 278: 1314–1322. doi: 10.1098/rspb.2010.1737
[48]  Stocker A, Simoncelli E (2006) Sensory adaptation within a bayesian framework for perception. Adv Neural Inf Process Syst 18: 1291–1298.
[49]  Cunningham D, Chatziastros A, Von der Heyde M, Bülthoff H (2001) Driving in the future: temporal visuomotor adaptation and generalization. J Vis 1: 88–98. doi: 10.1167/1.2.3
[50]  Cunningham DW, Billock VA, Tsou BH (2001) Sensorimotor adaptation to violations of temporal contiguity. Psychol Sci 12: 532–535. doi: 10.1111/1467-9280.d01-17
[51]  Franssen V, Vandierendonck A (2002) Time estimation: does the reference memory mediate the effect of knowledge of results? Acta Psychol (Amst) 109: 239–267. doi: 10.1016/s0001-6918(01)00059-2
[52]  Ryan L, Robey T (2002) Learning and performance effects of accurate and erroneous knowledge of results on time perception. Acta Psychol (Amst) 111: 83–100. doi: 10.1016/s0001-6918(02)00044-6
[53]  Ryan L, Henry K, Robey T, Edwards J (2004) Resolution of conicts between internal and external information sources on a time reproduction task: the role of perceived information reliability and attributional style. Acta Psychol (Amst) 117: 205–229. doi: 10.1016/j.actpsy.2004.06.005
[54]  Ryan L, Fritz M (2007) Erroneous knowledge of results affects decision and memory processes on timing tasks. J Exp Psychol Hum Percept Perform 33: 1468–1482. doi: 10.1037/0096-1523.33.6.1468
[55]  Mamassian P (2008) Overconfidence in an objective anticipatory motor task. Psychol Sci Public Interest 19: 601–606. doi: 10.1111/j.1467-9280.2008.02129.x
[56]  Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72: 561–582. doi: 10.3758/app.72.3.561
[57]  Hass J, Herrmann J (2012) The neural representation of time: An information-theoretic perspective. Neural Comput 24: 1519–1552. doi: 10.1162/neco_a_00280
[58]  Maloney L, Mamassian P, et al. (2009) Bayesian decision theory as a model of human visual perception: testing Bayesian transfer. Vis Neurosci 26: 147–155. doi: 10.1017/s0952523808080905
[59]  Ma W (2012) Organizing probabilistic models of perception. Trends Cogn Sci 16: 511–518. doi: 10.1016/j.tics.2012.08.010
[60]  Ernst M, Banks M (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415: 429–433. doi: 10.1038/415429a
[61]  Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14: 257–262. doi: 10.1016/j.cub.2004.01.029
[62]  Zarco W, Merchant H, Prado L, Mendez JC (2009) Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol 102: 3191–202. doi: 10.1152/jn.00066.2009
[63]  Buonomano D, Laje R (2010) Population clocks: motor timing with neural dynamics. Trends Cogn Sci 14: 520–527. doi: 10.1016/j.tics.2010.09.002
[64]  Stewart N, Brown G, Chater N (2005) Absolute identification by relative judgment. Psychol Rev 112: 881–911. doi: 10.1037/0033-295x.112.4.881
[65]  Petzschner F, Glasauer S (2011) Iterative bayesian estimation as an explanation for range and regression effects: a study on human path integration. J Neurosci 31: 17220–17229. doi: 10.1523/jneurosci.2028-11.2011
[66]  Saunders I, Vijayakumar S (2012) Continuous evolution of statistical estimators for optimal decision-making. PLoS One 7: e37547. doi: 10.1371/journal.pone.0037547
[67]  Brainard D (1997) The psychophysics toolbox. Spat Vis 10: 433–436. doi: 10.1163/156856897x00357
[68]  Pelli D (1997) The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10: 437–442. doi: 10.1163/156856897x00366
[69]  Gibbon J (1981) On the form and location of the psychometric bisection function for time. J Math Psychol 24: 58–87. doi: 10.1016/0022-2496(81)90035-3
[70]  Rasmussen C, Williams CKI (2006) Gaussian Processes for Machine Learning. The MIT Press.
[71]  Neal R (2003) Slice sampling. Ann Stat 31: 705–741. doi: 10.1214/aos/1056562461

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133