[1] | Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27: 307–340. doi: 10.1146/annurev.neuro.27.070203.144247
|
[2] | Buhusi C, Meck W (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6: 755–765. doi: 10.1038/nrn1764
|
[3] | Miyazaki M, Nozaki D, Nakajima Y (2005) Testing bayesian models of human coincidence timing. Journal of neurophysiology 94: 395–399. doi: 10.1152/jn.01168.2004
|
[4] | Miyazaki M, Yamamoto S, Uchida S, Kitazawa S (2006) Bayesian calibration of simultaneity in tactile temporal order judgment. Nat Neurosci 9: 875–877. doi: 10.1038/nn1712
|
[5] | Hudson T, Maloney L, Landy M (2008) Optimal compensation for temporal uncertainty in movement planning. PLoS Comput Biol 4: e1000130. doi: 10.1371/journal.pcbi.1000130
|
[6] | Jazayeri M, Shadlen MN (2010) Temporal context calibrates interval timing. Nat Neurosci 13: 1020–1026. doi: 10.1038/nn.2590
|
[7] | Ahrens MB, Sahani M (2011) Observers exploit stochastic models of sensory change to help judge the passage of time. Curr Biol 21: 200–206. doi: 10.1016/j.cub.2010.12.043
|
[8] | Cicchini G, Arrighi R, Cecchetti L, Giusti M, Burr D (2012) Optimal encoding of interval timing in expert percussionists. J Neurosci 32: 1056–1060. doi: 10.1523/jneurosci.3411-11.2012
|
[9] | Eagleman DM (2008) Human time perception and its illusions. Curr Opin Neurobiol 18: 131–136. doi: 10.1016/j.conb.2008.06.002
|
[10] | Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7: 773–778. doi: 10.1038/nn1268
|
[11] | Stetson C, Cui X, Montague P, Eagleman D (2006) Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron 51: 651–659. doi: 10.1016/j.neuron.2006.08.006
|
[12] | Karmarkar UR, Buonomano DV (2007) Timing in the absence of clocks: encoding time in neural network states. Neuron 53: 427–438. doi: 10.1016/j.neuron.2007.01.006
|
[13] | Pariyadath V, Eagleman D (2007) The effect of predictability on subjective duration. PLoS One 2: e1264. doi: 10.1371/journal.pone.0001264
|
[14] | Kording K, Wolpert D (2006) Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10: 319–326. doi: 10.1016/j.tics.2006.05.003
|
[15] | Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427: 244–247. doi: 10.1038/nature02169
|
[16] | Tassinari H, Hudson T, Landy M (2006) Combining priors and noisy visual cues in a rapid pointing task. J Neurosci 26: 10154–10163. doi: 10.1523/jneurosci.2779-06.2006
|
[17] | Trommersh?user J, Maloney L, Landy M (2008) Decision making, movement planning and statistical decision theory. Trends Cogn Sci 12: 291–297. doi: 10.1016/j.tics.2008.04.010
|
[18] | Beierholm U, Quartz S, Shams L (2009) Bayesian priors are encoded independently from likelihoods in human multisensory perception. J Vis 9: 1–9. doi: 10.1167/9.5.23
|
[19] | Vilares I, Howard J, Fernandes H, Gottfried J, Kording K (2012) Differential representations of prior and likelihood uncertainty in the human brain. Curr Biol 22: 1641–1648. doi: 10.1016/j.cub.2012.07.010
|
[20] | Whiteley L, Sahani M (2008) Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes. J Vis 8: 1–15. doi: 10.1167/8.3.2
|
[21] | Mamassian P, Landy MS (2010) It's that time again. Nat Neurosci 13: 914–916. doi: 10.1038/nn0810-914
|
[22] | Salmoni A, Schmidt R, Walter C (1984) Knowledge of results and motor learning: a review and critical reappraisal. Psychol Bull 95: 355–386. doi: 10.1037//0033-2909.95.3.355
|
[23] | Blackwell J, Newell K (1996) The informational role of knowledge of results in motor learning. Acta Psychol (Amst) 92: 119–129. doi: 10.1016/0001-6918(95)00013-5
|
[24] | Girshick A, Landy M, Simoncelli E (2011) Cardinal rules: visual orientation perception reects knowledge of environmental statistics. Nat Neurosci 14: 926–932. doi: 10.1038/nn.2831
|
[25] | Rakitin B, Gibbon J, Penney T, Malapani C, Hinton S, et al. (1998) Scalar expectancy theory and peak-interval timing in humans. J Exp Psychol Anim Behav Process 24: 15–33. doi: 10.1037/0097-7403.24.1.15
|
[26] | Jones MR, McAuley JD (2005) Time judgments in global temporal contexts. Percept Psychophys 67: 398–417. doi: 10.3758/bf03193320
|
[27] | Lawrence R (2011) Temporal context affects duration reproduction. J Cogn Psychol 23: 157–170. doi: 10.1080/20445911.2011.477812
|
[28] | Haggard P, Clark S, Kalogeras J (2002) Voluntary action and conscious awareness. Nat Neurosci 5: 382–385. doi: 10.1038/nn827
|
[29] | Heron J, Hanson JVM, Whitaker D (2009) Effect before cause: supramodal recalibration of sensorimotor timing. PLoS One 4: e7681. doi: 10.1371/journal.pone.0007681
|
[30] | Mates J, Müller U, Radil T, P?ppel E (1994) Temporal integration in sensorimotor synchronization. J Cogn Neurosci 6: 332–340. doi: 10.1162/jocn.1994.6.4.332
|
[31] | Heron J, Aaen-Stockdale C, Hotchkiss J, Roach N, McGraw P, et al. (2012) Duration channels mediate human time perception. Proc Biol Sci 279: 690–698. doi: 10.1098/rspb.2011.1131
|
[32] | Chalk M, Seitz A, Seriès P (2010) Rapidly learned stimulus expectations alter perception of motion. J Vis 10: 1–18. doi: 10.1167/10.8.2
|
[33] | Hollingworth H (1910) The central tendency of judgment. J Philos Psychol Sci Methods 7: 461–469. doi: 10.2307/2012819
|
[34] | Lewis PA, Miall RC (2009) The precision of temporal judgement: milliseconds, many minutes, and beyond. Proc Biol Sci 364: 1897–1905. doi: 10.1098/rstb.2009.0020
|
[35] | Battaglia PW, Kersten D, Schrater PR (2011) How haptic size sensations improve distance perception. PLoS Comput Biol 7: e1002080. doi: 10.1371/journal.pcbi.1002080
|
[36] | Stocker AA, Simoncelli EP (2006) Noise characteristics and prior expectations in human visual speed perception. Nat Neurosci 9: 578–585. doi: 10.1038/nn1669
|
[37] | Berniker M, Voss M, Kording K (2010) Learning priors for bayesian computations in the nervous system. PLoS One 5: e12686. doi: 10.1371/journal.pone.0012686
|
[38] | Sotiropoulos G, Seitz A, Seriès P (2011) Changing expectations about speed alters perceived motion direction. Curr Biol 21: R883–R884. doi: 10.1016/j.cub.2011.09.013
|
[39] | Turnham E, Braun D, Wolpert D (2011) Inferring visuomotor priors for sensorimotor learning. PLoS Comput Biol 7: e1001112. doi: 10.1371/journal.pcbi.1001112
|
[40] | Jones M, Love B (2011) Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behav Brain Sci 34: 169–188. doi: 10.1017/s0140525x10003134
|
[41] | Zhang H, Maloney L (2012) Ubiquitous log odds: a common representation of probability and frequency distortion in perception, action, and cognition. Front Neurosci 6 doi: 10.3389/fnins.2012.00001
|
[42] | Natarajan R, Murray I, Shams L, Zemel RS (2009) Characterizing response behavior in multisensory perception with conicting cues. Adv Neural Inf Process Syst 21: 1153–1160.
|
[43] | K?rding KP, Wolpert DM (2004) The loss function of sensorimotor learning. Proc Natl Acad Sci U S A 101: 9839–9842. doi: 10.1073/pnas.0308394101
|
[44] | Vroomen J, Keetels M, de Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cogn Brain Res 22: 32–35. doi: 10.1016/j.cogbrainres.2004.07.003
|
[45] | Vroomen J, Keetels M (2010) Perception of intersensory synchrony: a tutorial review. Atten Percept Psychophys 72: 871–884. doi: 10.3758/app.72.4.871
|
[46] | Di Luca M, Machulla Tk, Ernst MO (2009) Recalibration of multisensory simultaneity: cross-modal transfer coincides with a change in perceptual latency. J Vis 9: 1–16. doi: 10.1167/9.12.7
|
[47] | Roach N, Heron J, Whitaker D, McGraw P (2011) Asynchrony adaptation reveals neural population code for audio-visual timing. Proc Biol Sci 278: 1314–1322. doi: 10.1098/rspb.2010.1737
|
[48] | Stocker A, Simoncelli E (2006) Sensory adaptation within a bayesian framework for perception. Adv Neural Inf Process Syst 18: 1291–1298.
|
[49] | Cunningham D, Chatziastros A, Von der Heyde M, Bülthoff H (2001) Driving in the future: temporal visuomotor adaptation and generalization. J Vis 1: 88–98. doi: 10.1167/1.2.3
|
[50] | Cunningham DW, Billock VA, Tsou BH (2001) Sensorimotor adaptation to violations of temporal contiguity. Psychol Sci 12: 532–535. doi: 10.1111/1467-9280.d01-17
|
[51] | Franssen V, Vandierendonck A (2002) Time estimation: does the reference memory mediate the effect of knowledge of results? Acta Psychol (Amst) 109: 239–267. doi: 10.1016/s0001-6918(01)00059-2
|
[52] | Ryan L, Robey T (2002) Learning and performance effects of accurate and erroneous knowledge of results on time perception. Acta Psychol (Amst) 111: 83–100. doi: 10.1016/s0001-6918(02)00044-6
|
[53] | Ryan L, Henry K, Robey T, Edwards J (2004) Resolution of conicts between internal and external information sources on a time reproduction task: the role of perceived information reliability and attributional style. Acta Psychol (Amst) 117: 205–229. doi: 10.1016/j.actpsy.2004.06.005
|
[54] | Ryan L, Fritz M (2007) Erroneous knowledge of results affects decision and memory processes on timing tasks. J Exp Psychol Hum Percept Perform 33: 1468–1482. doi: 10.1037/0096-1523.33.6.1468
|
[55] | Mamassian P (2008) Overconfidence in an objective anticipatory motor task. Psychol Sci Public Interest 19: 601–606. doi: 10.1111/j.1467-9280.2008.02129.x
|
[56] | Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72: 561–582. doi: 10.3758/app.72.3.561
|
[57] | Hass J, Herrmann J (2012) The neural representation of time: An information-theoretic perspective. Neural Comput 24: 1519–1552. doi: 10.1162/neco_a_00280
|
[58] | Maloney L, Mamassian P, et al. (2009) Bayesian decision theory as a model of human visual perception: testing Bayesian transfer. Vis Neurosci 26: 147–155. doi: 10.1017/s0952523808080905
|
[59] | Ma W (2012) Organizing probabilistic models of perception. Trends Cogn Sci 16: 511–518. doi: 10.1016/j.tics.2012.08.010
|
[60] | Ernst M, Banks M (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415: 429–433. doi: 10.1038/415429a
|
[61] | Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14: 257–262. doi: 10.1016/j.cub.2004.01.029
|
[62] | Zarco W, Merchant H, Prado L, Mendez JC (2009) Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol 102: 3191–202. doi: 10.1152/jn.00066.2009
|
[63] | Buonomano D, Laje R (2010) Population clocks: motor timing with neural dynamics. Trends Cogn Sci 14: 520–527. doi: 10.1016/j.tics.2010.09.002
|
[64] | Stewart N, Brown G, Chater N (2005) Absolute identification by relative judgment. Psychol Rev 112: 881–911. doi: 10.1037/0033-295x.112.4.881
|
[65] | Petzschner F, Glasauer S (2011) Iterative bayesian estimation as an explanation for range and regression effects: a study on human path integration. J Neurosci 31: 17220–17229. doi: 10.1523/jneurosci.2028-11.2011
|
[66] | Saunders I, Vijayakumar S (2012) Continuous evolution of statistical estimators for optimal decision-making. PLoS One 7: e37547. doi: 10.1371/journal.pone.0037547
|
[67] | Brainard D (1997) The psychophysics toolbox. Spat Vis 10: 433–436. doi: 10.1163/156856897x00357
|
[68] | Pelli D (1997) The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10: 437–442. doi: 10.1163/156856897x00366
|
[69] | Gibbon J (1981) On the form and location of the psychometric bisection function for time. J Math Psychol 24: 58–87. doi: 10.1016/0022-2496(81)90035-3
|
[70] | Rasmussen C, Williams CKI (2006) Gaussian Processes for Machine Learning. The MIT Press.
|
[71] | Neal R (2003) Slice sampling. Ann Stat 31: 705–741. doi: 10.1214/aos/1056562461
|