[1] | Morrow CD, Warren B, Lentz MR (1987) Expression of enzymatically active poliovirus RNA-dependent RNA polymerase in Escherichia coli. Proc Natl Acad Sci USA 84: 6050–6054. doi: 10.1073/pnas.84.17.6050
|
[2] | Thompson AA, Peersen OB (2004) Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23: 3462–3471. doi: 10.1038/sj.emboj.7600357
|
[3] | Love RA, Maegley KA, Yu X, Ferre RA, Lingardo LK, et al. (2004) The Crystal Structure of the RNA-Dependent RNA Polymerase from Human Rhinovirus: A Dual-Function Target for Common Cold Antiviral Therapy. Structure 12: 1533–1544. doi: 10.1016/j.str.2004.05.024
|
[4] | Ferrer-Orta C, Arias A, Perez-Luque R, Escarmís C, Domingo E, et al. (2004) Structure of Foot-and-Mouth Disease Virus RNA-dependent RNA Polymerase and Its Complex with a Template-Primer RNA. J Biol Chem 279: 47212–47221. doi: 10.1074/jbc.m405465200
|
[5] | Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of Poliovirus. Structure 5: 1109–1122. doi: 10.1016/s0969-2126(97)00261-x
|
[6] | Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: Direct molecular test by using ribavirin. Proc Natl Acad Sci USA 98: 6895–6900. doi: 10.1073/pnas.111085598
|
[7] | Graci JD, Cameron CE (2006) Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol 16: 37–48. doi: 10.1002/rmv.483
|
[8] | Graci JD, Harki DA, Korneeva VS, Edathil JP, Too K, et al. (2007) Lethal mutagenesis of poliovirus mediated by a mutagenic pyrimidine analogue. J Virol 81: 11256–11266. doi: 10.1128/jvi.01028-07
|
[9] | Campagnola G, Gong P, Peersen OB (2011) High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors. Antiviral Res 91: 241–251. doi: 10.1016/j.antiviral.2011.06.006
|
[10] | Bruenn JA (1991) Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res 19: 217–226. doi: 10.1093/nar/19.2.217
|
[11] | Castro C, Arnold JJ, Cameron CE (2005) Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res 107: 141–149. doi: 10.1016/j.virusres.2004.11.004
|
[12] | Arnold JJ, Vignuzzi M, Stone JK, Andino R, Cameron CE (2005) Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J Biol Chem 280: 25706–25716. doi: 10.1074/jbc.m503444200
|
[13] | Gong P, Peersen OB (2010) Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 107: 22505–22510. doi: 10.1073/pnas.1007626107
|
[14] | Moustafa IM, Shen H, Morton B, Colina CM, Cameron CE (2011) Molecular Dynamics Simulations of Viral RNA Polymerases Link Conserved and Correlated Motions of Functional Elements to Fidelity. J Mol Biol 410: 159–181. doi: 10.1016/j.jmb.2011.04.078
|
[15] | Arnold JJ, Cameron CE (2000) Poliovirus RNA-dependent RNA Polymerase (3Dpol.) Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub). J Biol Chem 275: 5329–5339. doi: 10.1074/jbc.275.8.5329
|
[16] | Arnold JJ, Cameron CE (2004) Poliovirus RNA-Dependent RNA Polymerase (3Dpol): Pre-Steady-State Kinetic Analysis of Ribonucleotide Incorporation in the Presence of Mg2+. Biochemistry 43: 5126–5137. doi: 10.1021/bi035212y
|
[17] | Arnold JJ, Gohara DW, Cameron CE (2004) Poliovirus RNA-Dependent RNA Polymerase (3Dpol): Pre-Steady-State Kinetic Analysis of Ribonucleotide Incorporation in the Presence of Mn2+. Biochemistry 43: 5138–5148. doi: 10.1021/bi035213q
|
[18] | Gohara DW, Arnold JJ, Cameron CE (2004) Poliovirus RNA-Dependent RNA Polymerase (3Dpol): Kinetic, Thermodynamic, and Structural Analysis of Ribonucleotide Selection. Biochemistry 43: 5149–5158. doi: 10.1021/bi035429s
|
[19] | Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 100: 7289–7294. doi: 10.1073/pnas.1232294100
|
[20] | Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344–348. doi: 10.1038/nature04388
|
[21] | Korneeva VS, Cameron CE (2007) Structure-function relationships of the viral RNA-dependent RNA polymerase: fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket. J Biol Chem 282: 16135–16145. doi: 10.1074/jbc.m610090200
|
[22] | Kuchta RD, Mizrahi V, Benkovic PA, Johnson KA, Benkovic SJ (1987) Kinetic mechanism of DNA polymerase I (Klenow). Biochemistry 26: 8410–8417. doi: 10.1021/bi00399a057
|
[23] | Eger BT, Kuchta RD, Carroll SS, Benkovic PA, Dahlberg ME, et al. (1991) Mechanism of DNA replication fidelity for three mutants of DNA polymerase I: Klenow fragment KF (exo+), KF (polA5), and KF (exo?). Biochemistry 30: 1441–1448. doi: 10.1021/bi00219a039
|
[24] | Zinnen S, Hsieh JC, Modrich P (1994) Misincorporation and mispaired primer extension by human immunodeficiency virus reverse transcriptase. J Biol Chem 269: 24195–24202.
|
[25] | Tsai YC, Johnson KA (2006) A new paradigm for DNA polymerase specificity. Biochemistry 45: 9675–9687. doi: 10.1021/bi060993z
|
[26] | Dunlap CA, Tsai MD (2002) Use of 2-aminopurine and tryptophan fluorescence as probes in kinetic analyses of DNA polymerase. Biochemistry 41: 11226–11235. doi: 10.1021/bi025837g
|
[27] | Henzler-Wildman KA, Kern D (2007) Dynamic personalities of proteins. Nature 450: 964–972. doi: 10.1038/nature06522
|
[28] | Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, et al. (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450: 913–916. doi: 10.1038/nature06407
|
[29] | Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5: 789–796. doi: 10.1038/nchembio.232
|
[30] | Ma B, Nussinov R (2010) Enzyme dynamics point to stepwise conformational selection in catalysis. Curr Opin Chem Biol 14: 652–659. doi: 10.1016/j.cbpa.2010.08.012
|
[31] | Cameron CE, Moustafa IM, Arnold JJ (2009) Dynamics: the missing link between structure and function of the viral RNA-dependent RNA polymerase. Curr Opin Struct Biol 19: 768–774. doi: 10.1016/j.sbi.2009.10.012
|
[32] | Steitz TA (1993) DNA- and RNA-dependent DNA polymerases. Curr Opin Struct Biol 3: 31–38. doi: 10.1016/0959-440x(93)90198-t
|
[33] | Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90: 6498–6502. doi: 10.1073/pnas.90.14.6498
|
[34] | Castro C, Smidansky E, Maksimchuk KR, Arnold JJ, Korneeva VS, et al. (2007) Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA and DNA-dependent RNA and DNA polymerases. Proc Natl Acad Sci USA 104: 4267–4272. doi: 10.1073/pnas.0608952104
|
[35] | Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I, et al. (2009) Nucleic acid polymerses use a general acid for nucleotidyl transfer. Nature Structural and Molecular Biology 16: 212–218. doi: 10.1038/nsmb.1540
|
[36] | McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267: 585–590. doi: 10.1038/267585a0
|
[37] | Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nature Structural Biology 9: 646–652. doi: 10.1038/nsb0902-646
|
[38] | Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25: 1584–1604. doi: 10.1002/jcc.20082
|
[39] | Mackerell AD (2005) Empirical Force Fields for Proteins: Current Status and Future Directions. Annual Reports in Computational Chemistry 1: 91–102. doi: 10.1016/s1574-1400(05)01007-8
|
[40] | DeLano WL (2002) The PyMOL molecular graphics system. San Carlos (California): DeLano Scientific. Available: http://www.pymol.org. Accessed 26 February 2007.
|
[41] | Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, et al.. (2008) AMBER 10. San Francisco: University of California.
|
[42] | Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926–935. doi: 10.1063/1.445869
|
[43] | Berendsen HJ, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular-Dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690. doi: 10.1063/1.448118
|
[44] | Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23: 327–341. doi: 10.1016/0021-9991(77)90098-5
|
[45] | Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–10092. doi: 10.1063/1.464397
|
[46] | Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 3: 2312–2334. doi: 10.1021/ct700119m
|
[47] | Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al.. (2009) Gaussian 09, Revision A.1. Wallingford (Connecticut): Gaussian Inc.
|
[48] | Kortus MG, Kempf BJ, Haworth KG, Barton DJ, Peersen OB (2012) A Template RNA Entry Channel in the Fingers Domain of the Poliovirus Polymerase. J Mol Biol 417: 263–278. doi: 10.1016/j.jmb.2012.01.049
|
[49] | Yang X, Smidansky ED, Maksimchuk KR, Lum D, Welch JL, et al. (2012) Motif D of Viral RNA-Dependent RNA polymerases Determines Efficiency and Fidelity of Nucleotide Addition. Structure 20: 1519–1527. doi: 10.1016/j.str.2012.06.012
|
[50] | Mowat CG, Ruth Moysey R, Miles CS, Leys D, Doherty MK, et al. (2001) Kinetic and Crystallographic Analysis of the Key Active Site Acid/Base Arginine in a Soluble Fumarate Reductase. Biochemistry 40: 12292–12298. doi: 10.1021/bi011360h
|
[51] | Schlippe YVG, Hedstrom L (2005) A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Archives of Biochemistry and Biophysics 433: 266–278. doi: 10.1016/j.abb.2004.09.018
|
[52] | Michielssens S, Moors SLC, Froeyen M, Herdewijn P, Ceulemans A (2011) tructural basis for the role of LYS220 as proton donor for nucleotidyl transfer in HIV-1 reverse transcriptase. Biophys Chem 157: 1–6. doi: 10.1016/j.bpc.2011.03.009
|