[1] | Bell O, Tiwari VK, Thom? NH, Schübeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12: 554–564. doi: 10.1038/nrg3017
|
[2] | Gontijo AM, Green CM, Almouzni G (2003) Repairing DNA damage in chromatin. Biochimie 85: 1133–1147. doi: 10.1016/j.biochi.2003.10.018
|
[3] | Seibert E, Ross JB, Osman R (2003) Contribution of opening and bending dynamics to specific recognition of DNA damage. J Mol Biol 330: 687–703. doi: 10.1016/s0022-2836(03)00598-9
|
[4] | Thoma F (2005) Repair of UV lesions in nucleosomes–intrinsic properties and remodeling. DNA Repair (Amst) 4: 855–869. doi: 10.1016/j.dnarep.2005.04.005
|
[5] | Nilsen H, Lindahl T, Verreault A (2002) DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J 21: 5943–5952. doi: 10.1093/emboj/cdf581
|
[6] | Chen X, Chen Z, Chen H, Su Z, Yang J, et al. (2012) Nucleosomes suppress spontaneous mutations base-specifically in eukaryotes. Science 335: 1235–1238. doi: 10.1126/science.1217580
|
[7] | Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29: 2532–2537. doi: 10.1021/bi00462a015
|
[8] | Gale JM, Nissen KA, Smerdon MJ (1987) UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc Natl Acad Sci U S A 84: 6644–6648. doi: 10.1073/pnas.84.19.6644
|
[9] | Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185–195. doi: 10.1038/nrmicro2261
|
[10] | Almirón M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6: 2646–2654. doi: 10.1101/gad.6.12b.2646
|
[11] | Nair S, Finkel SE (2004) Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186: 4192–4198. doi: 10.1128/jb.186.13.4192-4198.2004
|
[12] | Martinez A, Kolter R (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179: 5188–5194.
|
[13] | Setlow P (1992) I will survive: protecting and repairing spore DNA. J Bacteriol 174: 2737–2741.
|
[14] | Ilari A, Ceci P, Ferrari D, Rossi GL, Chiancone E (2002) Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. J Biol Chem 277: 37619–37623. doi: 10.1074/jbc.m206186200
|
[15] | Boubrik F, Rouviere-Yaniv J (1995) Increased sensitivity to gamma irradiation in bacteria lacking protein HU. Proc Natl Acad Sci U S A 92: 3958–3962. doi: 10.1073/pnas.92.9.3958
|
[16] | Li S, Waters R (1997) Induction and repair of cyclobutane pyrimidine dimers in the Escherichia coli tRNA gene tyrT: Fis protein affects dimer induction in the control region and suppresses preferential repair in the coding region of the transcribed strand, except in a short region near the transcription start site. J Mol Biol 271: 31–46. doi: 10.1006/jmbi.1997.1154
|
[17] | Pehrson JR, Cohen LH (1992) Effects of DNA looping on pyrimidine dimer formation. Nucleic Acids Res 20: 1321–1324. doi: 10.1093/nar/20.6.1321
|
[18] | Washietl S, Machne R, Goldman N (2008) Evolutionary footprints of nucleosome positions in yeast. Trends Genet 24: 583–587. doi: 10.1016/j.tig.2008.09.003
|
[19] | Ying H, Epps J, Williams R, Huttley G (2009) Evidence that localized variation in primate sequence divergence arises from an influence of nucleosome placement on DNA repair. Mol Biol Evol 27: 637–649. doi: 10.1093/molbev/msp253
|
[20] | Kenigsberg E, Bar A, Segal E, Tanay A (2010) Widespread compensatory evolution conserves DNA-encoded nucleosome organization in yeast. PLoS Comput Biol 6: e1001039. doi: 10.1371/journal.pcbi.1001039
|
[21] | Prendergast JG, Semple CA (2011) Widespread signatures of recent selection linked to nucleosome positioning in the human lineage. Genome Res 21: 1777–1787. doi: 10.1101/gr.122275.111
|
[22] | Tolstorukov MY, Volfovsky N, Stephens RM, Park PJ (2011) Impact of chromatin structure on sequence variability in the human genome. Nat Struct Mol Biol 18: 510–515. doi: 10.1038/nsmb.2012
|
[23] | Warnecke T, Batada NN, Hurst LD (2008) The impact of the nucleosome code on protein-coding sequence evolution in yeast. PLoS Genet 4: e1000250. doi: 10.1371/journal.pgen.1000250
|
[24] | Sasaki S, Mello CC, Shimada A, Nakatani Y, Hashimoto S, et al. (2009) Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323: 401–404. doi: 10.1126/science.1163183
|
[25] | Schuster-B?ckler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488: 504–507. doi: 10.1038/nature11273
|
[26] | Smerdon MJ (1991) DNA repair and the role of chromatin structure. Curr Opin Cell Biol 3: 422–428. doi: 10.1016/0955-0674(91)90069-b
|
[27] | Tijsterman M, de Pril R, Tasseron-de Jong JG, Brouwer J (1999) RNA polymerase II transcription suppresses nucleosomal modulation of UV-induced (6-4) photoproduct and cyclobutane pyrimidine dimer repair in yeast. Mol Cell Biol 19: 934–940.
|
[28] | Givens RM, Lai WK, Rizzo JM, Bard JE, Mieczkowski PA, et al. (2012) Chromatin architectures at fission yeast transcriptional promoters and replication origins. Nucleic Acids Res 40: 7176–7189. doi: 10.1093/nar/gks351
|
[29] | Shivaswamy S, Iyer VR (2008) Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol 28: 2221–2234. doi: 10.1128/mcb.01659-07
|
[30] | Zhang L, Ma H, Pugh BF (2011) Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res 21: 875–884. doi: 10.1101/gr.117465.110
|
[31] | Kahramanoglou C, Seshasayee AS, Prieto AI, Ibberson D, Schmidt S, et al. (2011) Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 39: 2073–2091. doi: 10.1093/nar/gkq934
|
[32] | Prieto AI, Kahramanoglou C, Ali RM, Fraser GM, Seshasayee AS, et al. (2012) Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res 40: 3524–3537. doi: 10.1093/nar/gkr1236
|
[33] | Martincorena I, Seshasayee AS, Luscombe NM (2012) Evidence of non-random mutation rates suggests an evolutionary risk management strategy. Nature 485: 95–98. doi: 10.1038/nature10995
|
[34] | Lee H, Popodi E, Tang H, Foster PL (2012) Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci U S A 109: E2774–83. doi: 10.1073/pnas.1210309109
|
[35] | Saint-Ruf C, Pesut J, Sopta M, Matic I (2007) Causes and consequences of DNA repair activity modulation during stationary phase in Escherichia coli. Crit Rev Biochem Mol Biol 42: 259–270. doi: 10.1080/10409230701495599
|
[36] | Mokkapati SK, Fernández de Henestrosa AR, Bhagwat AS (2001) Escherichia coli DNA glycosylase Mug: a growth-regulated enzyme required for mutation avoidance in stationary-phase cells. Mol Microbiol 41: 1101–1111. doi: 10.1046/j.1365-2958.2001.02559.x
|
[37] | Barak Y, Cohen-Fix O, Livneh Z (1995) Deamination of cytosine-containing pyrimidine photodimers in UV-irradiated DNA. Significance for UV light mutagenesis. J Biol Chem 270: 24174–24179. doi: 10.1074/jbc.270.41.24174
|
[38] | Mackay WJ, Han S, Samson LD (1994) DNA alkylation repair limits spontaneous base substitution mutations in Escherichia coli. J Bacteriol 176: 3224–3230.
|
[39] | Lieb M, Bhagwat AS (1996) Very short patch repair: reducing the cost of cytosine methylation. Mol Microbiol 20: 467–473. doi: 10.1046/j.1365-2958.1996.5291066.x
|
[40] | Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, et al. (2012) Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun 3: 886. doi: 10.1038/ncomms1878
|
[41] | Macintyre G, Pitsikas P, Cupples CG (1999) Growth phase-dependent regulation of Vsr endonuclease may contribute to 5-methylcytosine mutational hot spots in Escherichia coli. J Bacteriol 181: 4435–4436.
|
[42] | Fox KR, Allinson SL, Sahagun-Krause H, Brown T (2000) Recognition of GT mismatches by Vsr mismatch endonuclease. Nucleic Acids Res 28: 2535–2540. doi: 10.1093/nar/28.13.2535
|
[43] | Feng G, Tsui HC, Winkler ME (1996) Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol 178: 2388–2396.
|
[44] | Loewe L, Textor V, Scherer S (2003) High deleterious genomic mutation rate in stationary phase of Escherichia coli. Science 302: 1558–1560. doi: 10.1126/science.1087911
|
[45] | Kivisaar M (2003) Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 5: 814–827. doi: 10.1046/j.1462-2920.2003.00488.x
|
[46] | Nakahara T, Zhang QM, Hashiguchi K, Yonei S (2000) Identification of proteins of Escherichia coli and Saccharomyces cerevisiae that specifically bind to C/C mismatches in DNA. Nucleic Acids Res 28: 2551–2556. doi: 10.1093/nar/28.13.2551
|
[47] | Timms AR, Muriel W, Bridges BA (1999) A UmuD,C-dependent pathway for spontaneous G:C to C:G transversions in stationary phase Escherichia coli mut Y. Mutat Res 435: 77–80. doi: 10.1016/s0921-8777(99)00035-x
|
[48] | Boulard Y, Cognet JA, Fazakerley GV (1997) Solution structure as a function of pH of two central mismatches, C. T and C. C, in the 29 to 39 K-ras gene sequence, by nuclear magnetic resonance and molecular dynamics. J Mol Biol 268: 331–347. doi: 10.1006/jmbi.1997.0975
|
[49] | Leopold SR, Magrini V, Holt NJ, Shaikh N, Mardis ER, et al. (2009) A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. Proc Natl Acad Sci U S A 106: 8713–8718. doi: 10.1073/pnas.0812949106
|
[50] | Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: e11147. doi: 10.1371/journal.pone.0011147
|
[51] | Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. doi: 10.1093/bioinformatics/btl446
|
[52] | Stamatakis A, Ott M (2008) Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core architectures. Philos Trans R Soc Lond B Biol Sci 363: 3977–3984. doi: 10.1098/rstb.2008.0163
|
[53] | Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5: e1000344. doi: 10.1371/journal.pgen.1000344
|
[54] | Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. doi: 10.1093/molbev/msm088
|
[55] | Breiman L (2001) Random Forests. Machine Learning 45: 5–32. doi: 10.1023/a:1010933404324
|
[56] | Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. (2009) The WEKA Data Mining Software: An Update. SIGKDD Explorations 11: 10–18. doi: 10.1145/1656274.1656278
|
[57] | The R Development Core Team (2009) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
|