全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nucleoid-Associated Proteins Affect Mutation Dynamics in E. coli in a Growth Phase-Specific Manner

DOI: 10.1371/journal.pcbi.1002846

Full-Text   Cite this paper   Add to My Lib

Abstract:

The binding of proteins can shield DNA from mutagenic processes but also interfere with efficient repair. How the presence of DNA-binding proteins shapes intra-genomic differences in mutability and, ultimately, sequence variation in natural populations, however, remains poorly understood. In this study, we examine sequence evolution in Escherichia coli in relation to the binding of four abundant nucleoid-associated proteins: Fis, H-NS, IhfA, and IhfB. We find that, for a subset of mutations, protein occupancy is associated with both increased and decreased mutability in the underlying sequence depending on when the protein is bound during the bacterial growth cycle. On average, protein-bound DNA exhibits reduced mutability compared to protein-free DNA. However, this net protective effect is weak and can be abolished or even reversed during stages of colony growth where binding coincides – and hence likely interferes with – DNA repair activity. We suggest that the four nucleoid-associated proteins analyzed here have played a minor but significant role in patterning extant sequence variation in E. coli.

References

[1]  Bell O, Tiwari VK, Thom? NH, Schübeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12: 554–564. doi: 10.1038/nrg3017
[2]  Gontijo AM, Green CM, Almouzni G (2003) Repairing DNA damage in chromatin. Biochimie 85: 1133–1147. doi: 10.1016/j.biochi.2003.10.018
[3]  Seibert E, Ross JB, Osman R (2003) Contribution of opening and bending dynamics to specific recognition of DNA damage. J Mol Biol 330: 687–703. doi: 10.1016/s0022-2836(03)00598-9
[4]  Thoma F (2005) Repair of UV lesions in nucleosomes–intrinsic properties and remodeling. DNA Repair (Amst) 4: 855–869. doi: 10.1016/j.dnarep.2005.04.005
[5]  Nilsen H, Lindahl T, Verreault A (2002) DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J 21: 5943–5952. doi: 10.1093/emboj/cdf581
[6]  Chen X, Chen Z, Chen H, Su Z, Yang J, et al. (2012) Nucleosomes suppress spontaneous mutations base-specifically in eukaryotes. Science 335: 1235–1238. doi: 10.1126/science.1217580
[7]  Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29: 2532–2537. doi: 10.1021/bi00462a015
[8]  Gale JM, Nissen KA, Smerdon MJ (1987) UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc Natl Acad Sci U S A 84: 6644–6648. doi: 10.1073/pnas.84.19.6644
[9]  Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185–195. doi: 10.1038/nrmicro2261
[10]  Almirón M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6: 2646–2654. doi: 10.1101/gad.6.12b.2646
[11]  Nair S, Finkel SE (2004) Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186: 4192–4198. doi: 10.1128/jb.186.13.4192-4198.2004
[12]  Martinez A, Kolter R (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179: 5188–5194.
[13]  Setlow P (1992) I will survive: protecting and repairing spore DNA. J Bacteriol 174: 2737–2741.
[14]  Ilari A, Ceci P, Ferrari D, Rossi GL, Chiancone E (2002) Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. J Biol Chem 277: 37619–37623. doi: 10.1074/jbc.m206186200
[15]  Boubrik F, Rouviere-Yaniv J (1995) Increased sensitivity to gamma irradiation in bacteria lacking protein HU. Proc Natl Acad Sci U S A 92: 3958–3962. doi: 10.1073/pnas.92.9.3958
[16]  Li S, Waters R (1997) Induction and repair of cyclobutane pyrimidine dimers in the Escherichia coli tRNA gene tyrT: Fis protein affects dimer induction in the control region and suppresses preferential repair in the coding region of the transcribed strand, except in a short region near the transcription start site. J Mol Biol 271: 31–46. doi: 10.1006/jmbi.1997.1154
[17]  Pehrson JR, Cohen LH (1992) Effects of DNA looping on pyrimidine dimer formation. Nucleic Acids Res 20: 1321–1324. doi: 10.1093/nar/20.6.1321
[18]  Washietl S, Machne R, Goldman N (2008) Evolutionary footprints of nucleosome positions in yeast. Trends Genet 24: 583–587. doi: 10.1016/j.tig.2008.09.003
[19]  Ying H, Epps J, Williams R, Huttley G (2009) Evidence that localized variation in primate sequence divergence arises from an influence of nucleosome placement on DNA repair. Mol Biol Evol 27: 637–649. doi: 10.1093/molbev/msp253
[20]  Kenigsberg E, Bar A, Segal E, Tanay A (2010) Widespread compensatory evolution conserves DNA-encoded nucleosome organization in yeast. PLoS Comput Biol 6: e1001039. doi: 10.1371/journal.pcbi.1001039
[21]  Prendergast JG, Semple CA (2011) Widespread signatures of recent selection linked to nucleosome positioning in the human lineage. Genome Res 21: 1777–1787. doi: 10.1101/gr.122275.111
[22]  Tolstorukov MY, Volfovsky N, Stephens RM, Park PJ (2011) Impact of chromatin structure on sequence variability in the human genome. Nat Struct Mol Biol 18: 510–515. doi: 10.1038/nsmb.2012
[23]  Warnecke T, Batada NN, Hurst LD (2008) The impact of the nucleosome code on protein-coding sequence evolution in yeast. PLoS Genet 4: e1000250. doi: 10.1371/journal.pgen.1000250
[24]  Sasaki S, Mello CC, Shimada A, Nakatani Y, Hashimoto S, et al. (2009) Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323: 401–404. doi: 10.1126/science.1163183
[25]  Schuster-B?ckler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488: 504–507. doi: 10.1038/nature11273
[26]  Smerdon MJ (1991) DNA repair and the role of chromatin structure. Curr Opin Cell Biol 3: 422–428. doi: 10.1016/0955-0674(91)90069-b
[27]  Tijsterman M, de Pril R, Tasseron-de Jong JG, Brouwer J (1999) RNA polymerase II transcription suppresses nucleosomal modulation of UV-induced (6-4) photoproduct and cyclobutane pyrimidine dimer repair in yeast. Mol Cell Biol 19: 934–940.
[28]  Givens RM, Lai WK, Rizzo JM, Bard JE, Mieczkowski PA, et al. (2012) Chromatin architectures at fission yeast transcriptional promoters and replication origins. Nucleic Acids Res 40: 7176–7189. doi: 10.1093/nar/gks351
[29]  Shivaswamy S, Iyer VR (2008) Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol 28: 2221–2234. doi: 10.1128/mcb.01659-07
[30]  Zhang L, Ma H, Pugh BF (2011) Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res 21: 875–884. doi: 10.1101/gr.117465.110
[31]  Kahramanoglou C, Seshasayee AS, Prieto AI, Ibberson D, Schmidt S, et al. (2011) Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 39: 2073–2091. doi: 10.1093/nar/gkq934
[32]  Prieto AI, Kahramanoglou C, Ali RM, Fraser GM, Seshasayee AS, et al. (2012) Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res 40: 3524–3537. doi: 10.1093/nar/gkr1236
[33]  Martincorena I, Seshasayee AS, Luscombe NM (2012) Evidence of non-random mutation rates suggests an evolutionary risk management strategy. Nature 485: 95–98. doi: 10.1038/nature10995
[34]  Lee H, Popodi E, Tang H, Foster PL (2012) Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci U S A 109: E2774–83. doi: 10.1073/pnas.1210309109
[35]  Saint-Ruf C, Pesut J, Sopta M, Matic I (2007) Causes and consequences of DNA repair activity modulation during stationary phase in Escherichia coli. Crit Rev Biochem Mol Biol 42: 259–270. doi: 10.1080/10409230701495599
[36]  Mokkapati SK, Fernández de Henestrosa AR, Bhagwat AS (2001) Escherichia coli DNA glycosylase Mug: a growth-regulated enzyme required for mutation avoidance in stationary-phase cells. Mol Microbiol 41: 1101–1111. doi: 10.1046/j.1365-2958.2001.02559.x
[37]  Barak Y, Cohen-Fix O, Livneh Z (1995) Deamination of cytosine-containing pyrimidine photodimers in UV-irradiated DNA. Significance for UV light mutagenesis. J Biol Chem 270: 24174–24179. doi: 10.1074/jbc.270.41.24174
[38]  Mackay WJ, Han S, Samson LD (1994) DNA alkylation repair limits spontaneous base substitution mutations in Escherichia coli. J Bacteriol 176: 3224–3230.
[39]  Lieb M, Bhagwat AS (1996) Very short patch repair: reducing the cost of cytosine methylation. Mol Microbiol 20: 467–473. doi: 10.1046/j.1365-2958.1996.5291066.x
[40]  Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, et al. (2012) Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun 3: 886. doi: 10.1038/ncomms1878
[41]  Macintyre G, Pitsikas P, Cupples CG (1999) Growth phase-dependent regulation of Vsr endonuclease may contribute to 5-methylcytosine mutational hot spots in Escherichia coli. J Bacteriol 181: 4435–4436.
[42]  Fox KR, Allinson SL, Sahagun-Krause H, Brown T (2000) Recognition of GT mismatches by Vsr mismatch endonuclease. Nucleic Acids Res 28: 2535–2540. doi: 10.1093/nar/28.13.2535
[43]  Feng G, Tsui HC, Winkler ME (1996) Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol 178: 2388–2396.
[44]  Loewe L, Textor V, Scherer S (2003) High deleterious genomic mutation rate in stationary phase of Escherichia coli. Science 302: 1558–1560. doi: 10.1126/science.1087911
[45]  Kivisaar M (2003) Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 5: 814–827. doi: 10.1046/j.1462-2920.2003.00488.x
[46]  Nakahara T, Zhang QM, Hashiguchi K, Yonei S (2000) Identification of proteins of Escherichia coli and Saccharomyces cerevisiae that specifically bind to C/C mismatches in DNA. Nucleic Acids Res 28: 2551–2556. doi: 10.1093/nar/28.13.2551
[47]  Timms AR, Muriel W, Bridges BA (1999) A UmuD,C-dependent pathway for spontaneous G:C to C:G transversions in stationary phase Escherichia coli mut Y. Mutat Res 435: 77–80. doi: 10.1016/s0921-8777(99)00035-x
[48]  Boulard Y, Cognet JA, Fazakerley GV (1997) Solution structure as a function of pH of two central mismatches, C. T and C. C, in the 29 to 39 K-ras gene sequence, by nuclear magnetic resonance and molecular dynamics. J Mol Biol 268: 331–347. doi: 10.1006/jmbi.1997.0975
[49]  Leopold SR, Magrini V, Holt NJ, Shaikh N, Mardis ER, et al. (2009) A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. Proc Natl Acad Sci U S A 106: 8713–8718. doi: 10.1073/pnas.0812949106
[50]  Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: e11147. doi: 10.1371/journal.pone.0011147
[51]  Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. doi: 10.1093/bioinformatics/btl446
[52]  Stamatakis A, Ott M (2008) Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core architectures. Philos Trans R Soc Lond B Biol Sci 363: 3977–3984. doi: 10.1098/rstb.2008.0163
[53]  Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5: e1000344. doi: 10.1371/journal.pgen.1000344
[54]  Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. doi: 10.1093/molbev/msm088
[55]  Breiman L (2001) Random Forests. Machine Learning 45: 5–32. doi: 10.1023/a:1010933404324
[56]  Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. (2009) The WEKA Data Mining Software: An Update. SIGKDD Explorations 11: 10–18. doi: 10.1145/1656274.1656278
[57]  The R Development Core Team (2009) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133