全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Mechanism of Allosteric Communication in Hsp70 Revealed by Molecular Dynamics Simulations

DOI: 10.1371/journal.pcbi.1002844

Full-Text   Cite this paper   Add to My Lib

Abstract:

Investigating ligand-regulated allosteric coupling between protein domains is fundamental to understand cell-life regulation. The Hsp70 family of chaperones represents an example of proteins in which ATP binding and hydrolysis at the Nucleotide Binding Domain (NBD) modulate substrate recognition at the Substrate Binding Domain (SBD). Herein, a comparative analysis of an allosteric (Hsp70-DnaK) and a non-allosteric structural homolog (Hsp110-Sse1) of the Hsp70 family is carried out through molecular dynamics simulations, starting from different conformations and ligand-states. Analysis of ligand-dependent modulation of internal fluctuations and local deformation patterns highlights the structural and dynamical changes occurring at residue level upon ATP-ADP exchange, which are connected to the conformational transition between closed and open structures. By identifying the dynamically responsive protein regions and specific cross-domain hydrogen-bonding patterns that differentiate Hsp70 from Hsp110 as a function of the nucleotide, we propose a molecular mechanism for the allosteric signal propagation of the ATP-encoded conformational signal.

References

[1]  Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88: 291–300. doi: 10.1139/o09-175
[2]  Mayer MP (2010) Gymnastics of Molecular Chaperones. Mol Cell 39: 321–331. doi: 10.1016/j.molcel.2010.07.012
[3]  Lüders J, Demand J, H?hfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275: 4613–4617. doi: 10.1074/jbc.275.7.4613
[4]  Mayer MP, Bukau B (2005) Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670–684. doi: 10.1007/s00018-004-4464-6
[5]  Evans CG, Chang L, Gestwicki JE (2010) Heat Shock Protein 70 (Hsp70) as an Emerging Drug Target. J Med Chem 53: 4585–4602. doi: 10.1021/jm100054f
[6]  Patury S, Miyata Y, Gestwicki JE (2009) Pharmacological Targeting of the Hsp70 Chaperone. Curr Top Med Chem 9: 1337–1351. doi: 10.2174/156802609789895674
[7]  Kumar DP, Vorvis C, Sarbeng EB, Cabra Ledesma VC, Willis JE, et al. (2011) The Four Hydrophobic Residues on the Hsp70 Inter-Domain Linker Have Two Distinct Roles. J Mol Biol 411: 1099–1113. doi: 10.1016/j.jmb.2011.07.001
[8]  Galluzzi L, Giordanetto F, Kroemer G (2009) Targeting HSP70 for Cancer Therapy. Mol Cell 36: 176–177. doi: 10.1016/j.molcel.2009.10.003
[9]  Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ERP (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106: 8471–8476. doi: 10.1073/pnas.0903503106
[10]  Zhuravleva A, Gierasch LM (2011) Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc Natl Acad Sci U S A 108: 6987–6992. doi: 10.1073/pnas.1014448108
[11]  Mapa K, Sikor M, Kudryavtsev V, Waegemann K, Kalinin S, et al. (2010) The Conformational Dynamics of the Mitochondrial Hsp70 Chaperone. Mol Cell 38: 89–100. doi: 10.1016/j.molcel.2010.03.010
[12]  Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, et al. (2008) Structure of the Hsp110:Hsc70 Nucleotide Exchange Machine. Mol Cell 31: 232–243. doi: 10.1016/j.molcel.2008.05.006
[13]  Vogel M, Mayer MP, Bukau B (2006) Allosteric Regulation of Hsp70 Chaperones Involves a Conserved Interdomain Linker. J Biol Chem 281: 38705–38711. doi: 10.1074/jbc.m609020200
[14]  Whalen KL, Tussey KB, Blanke SR, Spies MA (2011) Nature of Allosteric Inhibition in Glutamate Racemase: Discovery and Characterization of a Cryptic Inhibitory Pocket Using Atomistic MD Simulations and pKa Calculations. J Phys Chem B 115: 3416–3424. doi: 10.1021/jp201037t
[15]  Morra G, Verkhivker G, Colombo G (2009) Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer. PLoS Comput Biol 5: e1000323. doi: 10.1371/journal.pcbi.1000323
[16]  Torella R, Moroni E, Caselle M, Morra G, Colombo G (2010) Investigating Dynamic and Energetic Determinants of Protein Nucleic Acid Recognition: Analysis of the Zinc Finger Zif268-DNA Complexes. BMC Struct Biol 10: 42. doi: 10.1186/1472-6807-10-42
[17]  Morra G, Potestio R, Micheletti C, Colombo G (2012) Corresponding Functional Dynamics across the Hsp90 Chaperone Family: Insights from a Multiscale Analysis of MD Simulations. PLoS Comput Biol 8: e1002433. doi: 10.1371/journal.pcbi.1002433
[18]  Pagano K, Torella R, Foglieni C, Bugatti A, Tomaselli S, et al. (2012) Direct and Allosteric Inhibition of the FGF2/HSPGs/FGFR1 Ternary Complex Formation by an Antiangiogenic, Thrombospondin-1-Mimic Small Molecule. PLoS ONE 7: e36990. doi: 10.1371/journal.pone.0036990
[19]  Smock RG, Rivoire O, Russ WP, Swain JF, Leibler S, et al. (2010) An interdomain sector mediating allostery in Hsp70 molecular chaperones. Mol Syst Biol 6: 414. doi: 10.1038/msb.2010.65
[20]  Zuiderweg ER, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, et al. (2012) Allostery in the Hsp70 Chaperone Proteins. Top Curr Chem 1–55. doi: 10.1007/128_2012_323
[21]  Nicola? A, Senet P, Delarue P, Ripoll DR (2010) Human Inducible Hsp70: Structures, Dynamics, and Interdomain Communication from All-Atom Molecular Dynamics Simulations. J Chem Theory Comput 6: 2501–2519. doi: 10.1021/ct1002169
[22]  Go?a? E, Maisuradze GG, Senet P, O?dziej S, Czaplewski C, et al. (2012) Simulation of the Opening and Closing of Hsp70 Chaperones by Coarse-Grained Molecular Dynamics. J Chem Theory Comput 8: 1750–1764. doi: 10.1021/ct200680g
[23]  Gardino AK, Villali J, Kivenson A, Lei M, Liu CF, et al. (2009) Transient non-native bonds promote activation of a signaling protein. Cell 139: 1109–1118. doi: 10.1016/j.cell.2009.11.022
[24]  Skjaerven L, Grant B, Muga A, Teigen K, McCammon JA, et al. (2011) Conformational sampling and nucleotide-dependent transitions of the GroEL subunit probed by unbiased molecular dynamics simulations. PLoS Comput Biol 7: e1002004. doi: 10.1371/journal.pcbi.1002004
[25]  Liu Q, Hendrickson WA (2007) Insights into Hsp70 Chaperone Activity from a Crystal Structure of the Yeast Hsp110 Sse1. Cell 131: 106–120. doi: 10.1016/j.cell.2007.08.039
[26]  Zheng W, Brooks BR, Hummer G (2007) Protein conformational transitions explored by mixed elastic network models. Proteins 69: 43–57. doi: 10.1002/prot.21465
[27]  Haliloglu T, Bahar I, Erman B (1997) Gaussian Dynamics of Folded Proteins. Phys Rev Lett 79: 3090–3093. doi: 10.1103/physrevlett.79.3090
[28]  Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Folding and Design 2: 173–181. doi: 10.1016/s1359-0278(97)00024-2
[29]  Liu Y, Gierasch LM, Bahar I (2010) Role of Hsp70 ATPase Domain Intrinsic Dynamics and Sequence Evolution in Enabling its Functional Interactions with NEFs. PLoS Comput Biol 6: e1000931. doi: 10.1371/journal.pcbi.1000931
[30]  Pierce LC, Salomon-Ferrer R, Augusto F de Oliveira C, McCammon JA, Walker RC (2012) Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics. J Chem Theory Comput 8: 2997–3002. doi: 10.1021/ct300284c
[31]  Noe F, Ille F, Smith JC, Fischer S (2005) Automated computation of low-energy pathways for complex rearrangements in proteins: Application to the conformational switch of Ras p21. Proteins 59: 534–544. doi: 10.1002/prot.20422
[32]  Kühner S, Fischer S (2011) Structural mechanism of the ATP-induced dissociation of rigor myosin from actin. Proc Natl Acad Sci U S A 108: 7793–7798. doi: 10.1073/pnas.1018420108
[33]  Zhuravleva A, Korzhnev DM, Nolde SB, Kay LE, Arseniev AS, et al. (2007) Propagation of dynamic changes in barnase upon binding of barstar: an NMR and computational study. J Mol Biol 367: 1079–1092. doi: 10.1016/j.jmb.2007.01.051
[34]  Villali J, Kern D (2010) Choreographing an enzyme's dance. Curr Op Chem Biol 14: 636–643. doi: 10.1016/j.cbpa.2010.08.007
[35]  Otten R, Villali J, Kern D, Mulder FA (2010) Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r). J Am Chem Soc 132: 17004–14. doi: 10.1021/ja107410x
[36]  Chang L, Thompson AD, Ung P, Carlson HA, Gestwicki JE (2010) Mutagenesis Reveals the Complex Relationships between ATPase Rate and the Chaperone Activities of Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK). J Biol Chem 285: 21282–21291. doi: 10.1074/jbc.m110.124149
[37]  Johnson ER, McKay DB (1999) Mapping the Role of Active Site Residues for Transducing an ATP-Induced Conformational Change in the Bovine 70-kDa Heat Shock Cognate Protein. Biochemistry 38: 10823–10830. doi: 10.1021/bi990816g
[38]  Rist W, Graf C, Bukau B, Mayer MP (2006) Amide Hydrogen Exchange Reveals Conformational Changes in Hsp70 Chaperones Important for Allosteric Regulation. J Biol Chem 281: 16493–16501. doi: 10.1074/jbc.m600847200
[39]  Ahmad A, Bhattacharya A, McDonald RA, Cordes M, Ellington B, et al. (2011) Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc Natl Acad Sci U S A 108: 18966–18971. doi: 10.1073/pnas.1111220108
[40]  Wisen S, Bertelsen EB, Thompson AD, Patury S, Ung P, et al. (2010) Binding of a Small Molecule at a Protein–Protein Interface Regulates the Chaperone Activity of Hsp70–Hsp40. ACS Chem Biol 5: 611–622. doi: 10.1021/cb1000422
[41]  Woo HJ, Jiang J, Lafer EM, Sousa R (2009) ATP-Induced Conformational Changes in Hsp70: Molecular Dynamics and Experimental Validation of an in Silico Predicted Conformation. Biochemistry 48: 11470–11477. doi: 10.1021/bi901256y
[42]  Bhattacharya A, Kurochkin AV, Yip GNB, Zhang Y, Bertelsen EB, et al. (2009) Allostery in Hsp70 Chaperones is Transduced by Subdomain Rotations. J Mol Biol 388: 475–490. doi: 10.1016/j.jmb.2009.01.062
[43]  Rousaki A, Miyata Y, Jinwal UK, Dickey CA, Gestwicki JE, et al. (2011) Allosteric Drugs: The Interaction of Antitumor Compound MKT-077 with Human Hsp70 Chaperones. J Mol Biol 411: 614–632. doi: 10.1016/j.jmb.2011.06.003
[44]  Shida M, Arakawa A, Ishii R, Kishishita S, Takagi T, et al. (2010) Direct inter-subdomain interactions switch between the closed and open forms of the Hsp70 nucleotide-binding domain in the nucleotide-free state. Acta Cryst D66: 223–232. doi: 10.1107/s0907444909053979
[45]  Sriram M, Osipiuk J, Freeman BC, Morimoto RI, Joachimiak A (1997) Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure 5: 403–414. doi: 10.1016/s0969-2126(97)00197-4
[46]  Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4: 435–447. doi: 10.1021/ct700301q
[47]  van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kruger P, et al.. (1996) Biomolecular Simulation: The GROMOS96 manual and user guide. Zurich, Switzerland: Hochschulverlag AG an der ETH Zurich.
[48]  Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS. A linear constraint solver for molecular simulations. J Comp Chem 18: 1463–1472. doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.3.co;2-l
[49]  Essman U, Perera L, Berkowitz ML, Darden T, Lee H, et al. (1995) A smooth particle mesh ewald potential. J Chem Phys 103: 8577–8592. doi: 10.1063/1.470117
[50]  Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren VF, et al. (1999) Peptide Folding: When Simulation Meets Experiment. Angew Chem Int Ed 38: 236–240. doi: 10.1002/(sici)1521-3773(19990115)38:1/2<236::aid-anie236>3.0.co;2-m
[51]  Pontiggia F, Colombo G, Micheletti C, Orland H (2007) Anharmonicity and self-similarity of the free energy landscape of protein G. Phys Rev Lett 98: 048102. doi: 10.1103/physrevlett.98.048102
[52]  Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17: 412–425. doi: 10.1002/prot.340170408
[53]  Pontiggia F, Zen A, Micheletti C (2008) Small- and Large-Scale Conformational Changes of Adenylate Kinase: A Molecular Dynamics Study of the Subdomain Motion and Mechanics. Biophys J 95: 5901–5912. doi: 10.1529/biophysj.108.135467

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133