[1] | Robinson C, Bohannan BJM, Young V (2010) From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol R 74: 453–476. doi: 10.1128/mmbr.00014-10
|
[2] | Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740. doi: 10.1126/science.276.5313.734
|
[3] | Nee S, May RM (1997) Extinction and the Loss of Evolutionary History. Science 278: 692–694. doi: 10.1126/science.278.5338.692
|
[4] | Bryant JA, Stewart FJ, Epply JM, DeLong EF (2012) Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone. Ecology 93: 1659–73. doi: 10.1890/11-1204.1
|
[5] | Wang J, Soininen J, He J, Shen J (2012) Phylogenetic clustering increases with elevation for microbes. Environmental Microbiology 4: 217226. doi: 10.1111/j.1758-2229.2011.00324.x
|
[6] | Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, et al. (2008) Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci 105: 11505–11511. doi: 10.1073/pnas.0801920105
|
[7] | Casamayor EO, Barberan A (2010) Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Microb Ecol 59: 1–10. doi: 10.3354/ame01389
|
[8] | Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci 104: 11436–11440. doi: 10.1073/pnas.0611525104
|
[9] | Fierer N, Bradford MA, Jackson RB (2007) Toward an Ecological Classification of Soil Bacteria. Ecology 88: 1354–1364. doi: 10.1890/05-1839
|
[10] | Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. App Env Micro 75: 5111–5120. doi: 10.1128/aem.00335-09
|
[11] | Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, et al. (2009) Bacterial community variation in human body habitats across space and time. Science 326: 1694–7. doi: 10.1126/science.1177486
|
[12] | Plotkin JB, Muller-Landau HC (2002) Sampling the Species Composition of a Landscape. Ecology 83: 3344–3356. doi: 10.2307/3072084
|
[13] | Green JL, Plotkin JB (2007) A statistical theory for sampling species abundances. Ecol Lett 10: 1037–45. doi: 10.1111/j.1461-0248.2007.01101.x
|
[14] | Etienne RS (2005) A new sampling formula for neutral biodiversity. Ecol Lett 8: 253–260. doi: 10.1111/j.1461-0248.2004.00717.x
|
[15] | Preston FW (1960) Time and space and the variation of species. Ecology 41: 610–627. doi: 10.2307/1931793
|
[16] | May RM (1975). Patterns of species abundance and diversity. In: Cody M, Diamond J, editors. Ecology and Evolution of Communities. Cambridge: Belknap Press. pp. 81–120.
|
[17] | Curtis TP, Sloan WT, Scannell JW (2009) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci 99: 10494–9. doi: 10.1073/pnas.142680199
|
[18] | Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The Problem and Promise of Scale Dependency in Community Phylogenetics. Ecology 87: 2418–2424. doi: 10.1890/0012-9658(2006)87[2418:tpapos]2.0.co;2
|
[19] | Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology 88: 1770–1780. doi: 10.1890/06-1499.1
|
[20] | Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Cons 61: 1–10. doi: 10.1016/0006-3207(92)91201-3
|
[21] | Lozupone CA, Knight R (2005) UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Appl Environ Microbiol 71: 8228. doi: 10.1128/aem.71.12.8228-8235.2005
|
[22] | Schloss P (2008) Evaluating different approaches that test whether microbial communities have the same structure. ISME Journal 2: 265–275. doi: 10.1038/ismej.2008.5
|
[23] | Ives AR, Helmus MR (2010) Phylogenetic metrics of community similarity. Am Nat 176: E128–E142. doi: 10.1086/656486
|
[24] | Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717–745. doi: 10.1554/0014-3820(2003)057[0717:tfpsic]2.0.co;2
|
[25] | Cahill JF, Kembel SW, Lamb EG, Keddy PA (2008) Does phylogenetic relatedness influence the strength of com- petition among vascular plants? Perspect Plant Ecol Evol Syst 10: 41–50. doi: 10.1016/j.ppees.2007.10.001
|
[26] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Ann Rev Ecol Syst 33: 475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448
|
[27] | Mouquet N, Devictor V, Meynard CN, Munoz F, Bersier LF, et al. (2012) Ecophylogenetics: advances and perspectives. Biol Rev Camb Philos Soc 87: 769–785. doi: 10.1111/j.1469-185x.2012.00224.x
|
[28] | Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23: 619–630. doi: 10.1016/j.tree.2008.07.005
|
[29] | Vamosi SM, Heard SB, Vamosi JC, Webb CO (2008) Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol 18: 572–592. doi: 10.1111/j.1365-294x.2008.04001.x
|
[30] | Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6: 1653–64. doi: 10.1038/ismej.2012.22
|
[31] | MacArthur RM, Wilson EO (1967) The Theory of Island Biogeography. Princeton: Princeton Univ. Press.
|
[32] | Holyoak M, Leibold MA, Holt RD (2005) Metacommunities: spatial dynamics and ecological communities. Chicago: University of Chicago Press.
|
[33] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton Univ. Press.
|
[34] | Mihaljevic JR (2012) Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol Evol 27: 323–329. doi: 10.1016/j.tree.2012.01.011
|
[35] | Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, et al. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464. doi: 10.1093/bioinformatics/btq166
|
[36] | Morlon H, et al. (2011) Spatial patterns of phylogenetic diversity. Ecol Lett 14: 141–9. doi: 10.1111/j.1461-0248.2010.01563.x
|
[37] | Helmus MR, Ives AR (2012) Phylogenetic diversity area curves. Ecology In press. doi: 10.1890/11-0435.1
|
[38] | Costello EK, Stagaman K, Dethlefsen L Bohannan BJM, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336: 1255–1262. doi: 10.1126/science.1224203
|
[39] | Valiente-Banuet A, Verdu M (2007) Facilitation can increase the phylogenetic diversity of plant communities. Ecol Lett 10: 1029–1036. doi: 10.1111/j.1461-0248.2007.01100.x
|
[40] | Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13: 1085–1093. doi: 10.1111/j.1461-0248.2010.01509.x
|
[41] | Herrada EA, et al. (2008) Universal scaling in the branching of the tree of life. PLoS One 3: e2757. doi: 10.1371/journal.pone.0002757
|
[42] | Sugihara G (1980) Minimal Community Structure: An Explanation of Species Abundance Patterns. Am Nat 116: 770–787. doi: 10.1086/283669
|
[43] | Rosenzweig ML (1995). Species Diversity in Space and Time. Cambridge: Cambridge University Press.
|
[44] | Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, et al. (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8: 732–740. doi: 10.1111/j.1462-2920.2005.00956.x
|
[45] | Ofiteru I, Lunn M, Curtis TP, Wells GF, Criddle CS, et al. (2010) Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci 107: 15345–50. doi: 10.1073/pnas.1000604107
|
[46] | Jeraldo P, Sipos M, Chia N, Brulc JM, Dhillon AS, et al. (2012) Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes. Proc Natl Acad Sci 109: 9692–8. doi: 10.1073/pnas.1206721109
|
[47] | Price MN, Dehal PS, Arkin AP (2009) FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Mol Biol Evol 26: 1641–1650. doi: 10.1093/molbev/msp077
|