全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Evolution of Peptide Ligands with Custom-Tailored Characteristics for Targeting of Glycostructures

DOI: 10.1371/journal.pcbi.1002800

Full-Text   Cite this paper   Add to My Lib

Abstract:

As an advanced approach to identify suitable targeting molecules required for various diagnostic and therapeutic interventions, we developed a procedure to devise peptides with customizable features by an iterative computer-assisted optimization strategy. An evolutionary algorithm was utilized to breed peptides in silico and the “fitness” of peptides was determined in an appropriate laboratory in vitro assay. The influence of different evolutional parameters and mechanisms such as mutation rate, crossover probability, gaussian variation and fitness value scaling on the course of this artificial evolutional process was investigated. As a proof of concept peptidic ligands for a model target molecule, the cell surface glycolipid ganglioside GM1, were identified. Consensus sequences describing local fitness optima were reached from diverse sets of L- and proteolytically stable D lead peptides. Ten rounds of evolutional optimization encompassing a total of just 4400 peptides lead to an increase in affinity of the peptides towards fluorescently labeled ganglioside GM1 by a factor of 100 for L- and 400 for D-peptides.

References

[1]  Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2: 750–763. doi: 10.1038/nrc903
[2]  Olafsen TO, Wu AM (2010) Antibody vectors for imaging. Semin Nucl Med 40: 167–181. doi: 10.1053/j.semnuclmed.2009.12.005
[3]  Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23: 1137–1146. doi: 10.1038/nbt1141
[4]  Sheridan C (2007) Pharma consolidates its grip on post-antibody landscape. Nat Biotechnol 25: 365–366. doi: 10.1038/nbt0407-365
[5]  Audie J, Boyd C (2010) The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right. Curr Pharm Design 5: 567–582. doi: 10.2174/138161210790361425
[6]  Lee S, Xie J, Chen X (2010) Peptide-based probes for targeted molecular imaging. Biochemistry 49: 1364–1376. doi: 10.1021/bi901135x
[7]  Fischer PM (2003) The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr Prot Peptide Sci 4: 339–356. doi: 10.2174/1389203033487054
[8]  Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Del Rev 61: 953–964. doi: 10.1016/j.addr.2009.06.001
[9]  Rubinstein M, Niv MY (2009) Peptidic modulators of protein-protein interactions: progress and challenges in computational design. Biopolymers 91: 505–513. doi: 10.1002/bip.21164
[10]  Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F, et al. (2011) Computational design of peptide ligands. Trends Biotechnol 29: 231–239. doi: 10.1016/j.tibtech.2011.01.004
[11]  Yuan L, Kurek I, English J, Keenan R (2005) Laboratory directed protein evolution. Mic Mol Biol Rev 69: 373–392. doi: 10.1128/mmbr.69.3.373-392.2005
[12]  Singh J, Ator MA, Jaeger EP, Allen MP, Whipple DA, et al. (1996) Application of genetic algorithms to combinatorial synthesis: a computational approach to lead identification and lead optimization. J Am Chem Soc 118: 1669–1676. doi: 10.1021/ja953172i
[13]  Schneider G, Schr?dl W, Wallukat G, Müller J, Nissen E, et al. (1998) Peptide design by artificial neural networks and computer-based evolutionary search. Proc Natl Acad Sci U S A 95: 12179–12184. doi: 10.1073/pnas.95.21.12179
[14]  Fjell CD, Hiss JA, Hancock REW (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Dis 11: 37–51. doi: 10.1038/nrd3653
[15]  Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, et al. (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184: 1045–1059. doi: 10.1084/jem.184.3.1045
[16]  Frank M, Schloissnig S (2010) Bioinformatics and molecular modelling in glycobiology. Cell Mol Life Sci 67: 2749–2772. doi: 10.1007/s00018-010-0352-4
[17]  R?ckendorf N, Bade S, Hirst TR, Gorris H-H, Frey A (2007) Synthesis of a fluorescent ganglioside GM1 derivative and screening of a synthetic peptide library for GM1 binding sequence motifs. Bioconjugate Chem 18: 573–578. doi: 10.1021/bc0602376
[18]  Frey A, Di Canzio J, Zurakowski D (1998) A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods 221: 35–41. doi: 10.1016/s0022-1759(98)00170-7
[19]  Back T, Fogel DB, Michalewicz Z (1992) Handbook of evolutionary computation. London; New York: Taylor & Francis. 988 p.
[20]  Yokobayashi Y, Ikebukuro K, McNiven S, Karube I (1996) Directed evolution of trypsin inhibiting peptides using a genetic algorithm. J Chem Soc, Perkin Trans 1 20: 2435–2437. doi: 10.1039/p19960002435
[21]  Knapp B, Giczi V, Ribarics R, Schreiner W (2011) PeptX: Using genetic algorithms to optimize peptides for MHC binding. BMC Bioinformatics 12: 241–249. doi: 10.1186/1471-2105-12-241
[22]  Hohm T, Limbourg P, Hoffmann D (2006) A multiobjective evolutionary method for the design of peptidic mimotopes. J Comput Biol 13: 113–125. doi: 10.1089/cmb.2006.13.113
[23]  Borschbach M (2005) Neural classification of biological properties and genetic operator configuration issues. Trans Information Sci Appl 2(12): 2235–2242.
[24]  Zhang W, Yano K, Karube I (2007) Improving the efficiency of evolutionary de novo peptide design: strategies for probing configuration and parameter settings. BioSystems 88: 35–55. doi: 10.1016/j.biosystems.2006.04.007
[25]  Pielou EC (1966) Measurement of diversity in different types of biological collections. J Theoret Biol 13: 131–144. doi: 10.1016/0022-5193(66)90013-0
[26]  Matsubara T, Iijama K, Nakamura M, Taki T, Okahata Y, et al. (2007) Specific binding of GM1-binding peptides to high-density GM1 in lipid membranes. Langmuir 23: 708–714. doi: 10.1021/la0619067
[27]  Gorris HH, Bade S, R?ckendorf N, Albers E, Schmidt MA, et al. (2009) Rapid profiling of peptide stability in proteolytic environments. Anal Chem 81: 1580–1586. doi: 10.1021/ac802324f
[28]  Frank R (1992) Spot synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48: 9217–9232. doi: 10.1016/s0040-4020(01)85612-x
[29]  Ast T, Heine N, Germeroth L, Schneider-Mergener J (1999) Efficient assembly of peptomers on continuous surfaces. Tetrahedron Lett 40: 4317–4318. doi: 10.1016/s0040-4039(99)00775-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133