[1] | Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2: 750–763. doi: 10.1038/nrc903
|
[2] | Olafsen TO, Wu AM (2010) Antibody vectors for imaging. Semin Nucl Med 40: 167–181. doi: 10.1053/j.semnuclmed.2009.12.005
|
[3] | Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23: 1137–1146. doi: 10.1038/nbt1141
|
[4] | Sheridan C (2007) Pharma consolidates its grip on post-antibody landscape. Nat Biotechnol 25: 365–366. doi: 10.1038/nbt0407-365
|
[5] | Audie J, Boyd C (2010) The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right. Curr Pharm Design 5: 567–582. doi: 10.2174/138161210790361425
|
[6] | Lee S, Xie J, Chen X (2010) Peptide-based probes for targeted molecular imaging. Biochemistry 49: 1364–1376. doi: 10.1021/bi901135x
|
[7] | Fischer PM (2003) The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr Prot Peptide Sci 4: 339–356. doi: 10.2174/1389203033487054
|
[8] | Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Del Rev 61: 953–964. doi: 10.1016/j.addr.2009.06.001
|
[9] | Rubinstein M, Niv MY (2009) Peptidic modulators of protein-protein interactions: progress and challenges in computational design. Biopolymers 91: 505–513. doi: 10.1002/bip.21164
|
[10] | Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F, et al. (2011) Computational design of peptide ligands. Trends Biotechnol 29: 231–239. doi: 10.1016/j.tibtech.2011.01.004
|
[11] | Yuan L, Kurek I, English J, Keenan R (2005) Laboratory directed protein evolution. Mic Mol Biol Rev 69: 373–392. doi: 10.1128/mmbr.69.3.373-392.2005
|
[12] | Singh J, Ator MA, Jaeger EP, Allen MP, Whipple DA, et al. (1996) Application of genetic algorithms to combinatorial synthesis: a computational approach to lead identification and lead optimization. J Am Chem Soc 118: 1669–1676. doi: 10.1021/ja953172i
|
[13] | Schneider G, Schr?dl W, Wallukat G, Müller J, Nissen E, et al. (1998) Peptide design by artificial neural networks and computer-based evolutionary search. Proc Natl Acad Sci U S A 95: 12179–12184. doi: 10.1073/pnas.95.21.12179
|
[14] | Fjell CD, Hiss JA, Hancock REW (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Dis 11: 37–51. doi: 10.1038/nrd3653
|
[15] | Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, et al. (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184: 1045–1059. doi: 10.1084/jem.184.3.1045
|
[16] | Frank M, Schloissnig S (2010) Bioinformatics and molecular modelling in glycobiology. Cell Mol Life Sci 67: 2749–2772. doi: 10.1007/s00018-010-0352-4
|
[17] | R?ckendorf N, Bade S, Hirst TR, Gorris H-H, Frey A (2007) Synthesis of a fluorescent ganglioside GM1 derivative and screening of a synthetic peptide library for GM1 binding sequence motifs. Bioconjugate Chem 18: 573–578. doi: 10.1021/bc0602376
|
[18] | Frey A, Di Canzio J, Zurakowski D (1998) A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods 221: 35–41. doi: 10.1016/s0022-1759(98)00170-7
|
[19] | Back T, Fogel DB, Michalewicz Z (1992) Handbook of evolutionary computation. London; New York: Taylor & Francis. 988 p.
|
[20] | Yokobayashi Y, Ikebukuro K, McNiven S, Karube I (1996) Directed evolution of trypsin inhibiting peptides using a genetic algorithm. J Chem Soc, Perkin Trans 1 20: 2435–2437. doi: 10.1039/p19960002435
|
[21] | Knapp B, Giczi V, Ribarics R, Schreiner W (2011) PeptX: Using genetic algorithms to optimize peptides for MHC binding. BMC Bioinformatics 12: 241–249. doi: 10.1186/1471-2105-12-241
|
[22] | Hohm T, Limbourg P, Hoffmann D (2006) A multiobjective evolutionary method for the design of peptidic mimotopes. J Comput Biol 13: 113–125. doi: 10.1089/cmb.2006.13.113
|
[23] | Borschbach M (2005) Neural classification of biological properties and genetic operator configuration issues. Trans Information Sci Appl 2(12): 2235–2242.
|
[24] | Zhang W, Yano K, Karube I (2007) Improving the efficiency of evolutionary de novo peptide design: strategies for probing configuration and parameter settings. BioSystems 88: 35–55. doi: 10.1016/j.biosystems.2006.04.007
|
[25] | Pielou EC (1966) Measurement of diversity in different types of biological collections. J Theoret Biol 13: 131–144. doi: 10.1016/0022-5193(66)90013-0
|
[26] | Matsubara T, Iijama K, Nakamura M, Taki T, Okahata Y, et al. (2007) Specific binding of GM1-binding peptides to high-density GM1 in lipid membranes. Langmuir 23: 708–714. doi: 10.1021/la0619067
|
[27] | Gorris HH, Bade S, R?ckendorf N, Albers E, Schmidt MA, et al. (2009) Rapid profiling of peptide stability in proteolytic environments. Anal Chem 81: 1580–1586. doi: 10.1021/ac802324f
|
[28] | Frank R (1992) Spot synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48: 9217–9232. doi: 10.1016/s0040-4020(01)85612-x
|
[29] | Ast T, Heine N, Germeroth L, Schneider-Mergener J (1999) Efficient assembly of peptomers on continuous surfaces. Tetrahedron Lett 40: 4317–4318. doi: 10.1016/s0040-4039(99)00775-3
|