全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sensitivity Analysis of Flux Determination in Heart by H218O -provided Labeling Using a Dynamic Isotopologue Model of Energy Transfer Pathways

DOI: 10.1371/journal.pcbi.1002795

Full-Text   Cite this paper   Add to My Lib

Abstract:

To characterize intracellular energy transfer in the heart, two organ-level methods have frequently been employed: inversion and saturation transfer, and dynamic labeling. Creatine kinase (CK) fluxes obtained by following oxygen labeling have been considerably smaller than the fluxes determined by saturation transfer. It has been proposed that dynamic labeling determines net flux through CK shuttle, whereas saturation transfer measures total unidirectional flux. However, to our knowledge, no sensitivity analysis of flux determination by oxygen labeling has been performed, limiting our ability to compare flux distributions predicted by different methods. Here we analyze oxygen labeling in a physiological heart phosphotransfer network with active CK and adenylate kinase (AdK) shuttles and establish which fluxes determine the labeling state. A mathematical model consisting of a system of ordinary differential equations was composed describing enrichment in each phosphoryl group and inorganic phosphate. By varying flux distributions in the model and calculating the labeling, we analyzed labeling sensitivity to different fluxes in the heart. We observed that the labeling state is predominantly sensitive to total unidirectional CK and AdK fluxes and not to net fluxes. We conclude that measuring dynamic incorporation of into the high-energy phosphotransfer network in heart does not permit unambiguous determination of energetic fluxes with a higher magnitude than the ATP synthase rate when the bidirectionality of fluxes is taken into account. Our analysis suggests that the flux distributions obtained using dynamic labeling, after removing the net flux assumption, are comparable with those from inversion and saturation transfer.

References

[1]  Weiss JN, Korge P (2001) The cytoplasm: no longer a well-mixed bag. Circ Res 89: 108.
[2]  Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, et al. (2001) Energetic crosstalk between organelles. Circ Res 89: 153–159. doi: 10.1161/hh1401.093440
[3]  Abraham MR, Selivanov V, Hodgson D, Pucar D, Zingman L, et al. (2002) Coupling of cell ener-getics with membrane metabolic sensing. J Biol Chem 277: 24427–24434.
[4]  Vendelin M, Eimre M, Seppet E, Peet N, Andrienko T, et al. (2004) Intracellular di_usion of adenosine phosphates is locally restricted in cardiac muscle. Mol Cell Biochem 256–257: 229–241. doi: 10.1023/b:mcbi.0000009871.04141.64
[5]  Ramay H, Vendelin M (2009) Diffusion restrictions surrounding mitochondria: A mathematical model of heart muscle _bers. Biophys J 97: 443–452. doi: 10.1016/j.bpj.2009.04.062
[6]  Sepp M, Vendelin M, Vija H, Birkedal R (2010) ADP compartmentation analysis reveals coupling between pyruvate kinase and atpases in heart muscle. Biophys J 98: 2785–2793. doi: 10.1016/j.bpj.2010.03.025
[7]  Jepihhina N, Beraud N, Sepp M, Birkedal R, Vendelin M (2011) Permeabilized rat cardiomyocyte response demonstrates intracellular origin of diffusion obstacles. Biophys J 101: 2112–2121. doi: 10.1016/j.bpj.2011.09.025
[8]  Illaste A, Laasmaa M, Peterson P, Vendelin M (2012) Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells. Biophys J 102: 739–748. doi: 10.1016/j.bpj.2012.01.012
[9]  Joubert F, Gillet B, Mazet J, Mateo P, Beloeil J, et al. (2000) Evidence for myocardial ATP compartmentation from NMR inversion transfer analysis of creatine kinase fluxes. Biophys J 79: 1–13. doi: 10.1016/s0006-3495(00)76269-2
[10]  Joubert F, Hoerter J, Mazet J (2001) Discrimination of cardiac subcellular creatine kinase fluxes by NMR spectroscopy: A new method of analysis. Biophys J 81: 2995–3004. doi: 10.1016/s0006-3495(01)75940-1
[11]  Joubert F, Mazet J, Mateo P, Hoerter J (2002) 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways. J Biol Chem 277: 18469–18476. doi: 10.1074/jbc.m200792200
[12]  Vendelin M, Hoerter J, Mateo P, Soboll S, Gillet B, et al. (2010) Modulation of energy transfer pathways between mitochondria and myofibrils by changes in performance of perfused heart. J Biol Chem 285: 37240–37250. doi: 10.1074/jbc.m110.147116
[13]  From A, Ugurbil K (2011) Standard magnetic resonance-based measurements of the Pi→ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles. Am J Physiol, Cell Physiol 301: C1–11. doi: 10.1152/ajpcell.00345.2010
[14]  Balaban R, Koretsky A (2011) Interpretation of 31P NMR saturation transfer experiments: what you can't see might confuse you. Focus on “Standard magnetic resonance-based measurements of the Pi→ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles”. .Am J Physiol, Cell Physiol 301: C12–15. doi: 10.1152/ajpcell.00100.2011
[15]  Zeleznikar R, Dzeja P, Goldberg N (1995) Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J Biol Chem 270: 7311–7319. doi: 10.1074/jbc.270.13.7311
[16]  Dzeja P, Zeleznikar R, Goldberg N (1996) Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 271: 12847–12851. doi: 10.1074/jbc.271.22.12847
[17]  Dzeja P, Zeleznikar R, Goldberg N (1998) Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184: 169–182. doi: 10.1007/978-1-4615-5653-4_13
[18]  Dzeja P, Vitkevicius K, Redfield M, Burnett J, Terzic A (1999) Adenylate kinase-catalyzed phos-photransfer in the myocardium: Increased contribution in heart failure. Circ Res 84: 1137–1143. doi: 10.1161/01.res.84.10.1137
[19]  Pucar D, Janssen E, Dzeja P, Juranic N, Macura S, et al. (2000) Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress. J Biol Chem 275: 41424–41429. doi: 10.1074/jbc.m007903200
[20]  Pucar D, Dzeja P, Bast P, Juranic N, Macura S, et al. (2001) Cellular energetics in the precondi-tioned state: Protective role for phosphotransfer reactions captured by 18O-assisted 31P NMR. J Biol Chem 276: 44812–44819. doi: 10.1074/jbc.m104425200
[21]  Pucar D, Bast P, Gumina R, Lim L, Drahl C, et al. (2002) Adenylate kinase AK1 knockout heart: energetics and functional performance under ischemia-reperfusion. Am J Physiol Heart Circ Physiol 283: H776–782.
[22]  Janssen E, Terzic A, Wieringa B, Dzeja P (2003) Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice. J Biol Chem 278: 30441–30449. doi: 10.1074/jbc.m303150200
[23]  Gumina R, Pucar D, Bast P, Hodgson D, Kurtz C, et al. (2003) Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics. Am J Physiol Heart Circ Physiol 284: H2106–H2113.
[24]  Pucar D, Dzeja P, Bast P, Gumina R, Drahl C, et al. (2004) Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy. Mol Cell Biochem 256–257: 281–289. doi: 10.1023/b:mcbi.0000009875.30308.7a
[25]  Dzeja P, Terzic A, Wieringa B (2004) Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice. Mol Cell Biochem 256–257: 13–27. doi: 10.1023/b:mcbi.0000009856.23646.38
[26]  Dzeja P, Bast P, Pucar D, Wieringa B, Terzic A (2007) Defective metabolic signaling in adenylate kinase AK1 gene knock-out hearts compromises post-ischemic coronary reow. J Biol Chem 282: 31366–31372. doi: 10.1074/jbc.m705268200
[27]  Dzeja P, Hoyer K, Tian R, Zhang S, Nemutlu E, et al. (2011) Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase de_ciency. J Physiol (Lond) 589: 5193–5211. doi: 10.1113/jphysiol.2011.212829
[28]  Nemutlu E, Zhang S, Gupta A, Juranic NO, Macura SI, et al. (2012) Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted 31P NMR and mass spectrometry. Physiol Genomics 44: 386–402. doi: 10.1152/physiolgenomics.00152.2011
[29]  Vendelin M, Mateo P, Soboll S, Gillet B, Mazet J, et al. (2010) PCr and ATP export both partic-ipate in energy transfer from mitochondria in normoxic heart. J Biol Chem 285: le22. doi: 10.1074/jbc.n110.147116
[30]  Kupriyanov V, Ya Steinschneider A, Ruuge E, Kapel'Ko V, Yu Zueva M, et al. (1984) Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Biochim Biophys Acta 805: 319–331. doi: 10.1016/0167-4889(84)90014-4
[31]  Bittl J, Ingwall J (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. a 31P NMR magnetization transfer study. J Biol Chem 260: 3512–3517.
[32]  Ugurbil K, Petein M, Maidan R, Michurski S, From A (1986) Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction. Biochemistry 25: 100–107. doi: 10.1021/bi00349a015
[33]  Spencer RG, Balschi JA, Leigh JS Jr, Ingwall JS (1988) ATP synthesis and degradation rates in the perfused rat heart. 31P-nuclear magnetic resonance double saturation transfer measurements. Biophys J 54: 921–929. doi: 10.1016/s0006-3495(88)83028-5
[34]  Perry S, Mcauliffe J, Balschi J, Hickey P, Ingwall J (1988) Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase. Biochemistry 27: 2165–2172. doi: 10.1021/bi00406a052
[35]  Zahler R, Ingwall J (1992) Estimation of heart mitochondrial creatine kinase flux using magneti-zation transfer NMR spectroscopy. Am J Physiol 262: H1022–1028.
[36]  Portman M, Ning X (1992) Maturational changes in respiratory control through creatine kinase in heart in vivo. Am J Physiol 263: C453–460.
[37]  Matsumoto Y, Kaneko M, Kobayashi A, Fujise Y, Yamazaki N (1995) Creatine kinase kinetics in diabetic cardiomyopathy. Am J Physiol 268: E1070–1076.
[38]  Spencer R, Buttrick P, Ingwall J (1997) Function and bioenergetics in isolated perfused trained rat hearts. Am J Physiol 272: H409–417.
[39]  Schryer D, Peterson P, Paalme T, Vendelin M (2009) Bidirectionality and compartmentation of metabolic fluxes are revealed in the dynamics of isotopomer networks. Int J Mol Sci 10: 1697–1718. doi: 10.3390/ijms10041697
[40]  Hutton R, Boyer P (1979) Subunit interaction during catalysis. alternating site cooperativity of mitochondrial adenosine triphosphatase. J Biol Chem 254: 9990–9993.
[41]  Goldberg N, Ames A, Gander J, Walseth T (1983) Magnitude of increase in retinal cGMP metabolic flux determined by 18O incorporation into nucleotide alpha-phosphoryls corresponds with intensity of photic stimulation. J Biol Chem 258: 9213–9219.
[42]  Walseth T, Gander J, Eide S, Krick T, Goldberg N (1983) 18O labeling of adenine nucleotide α-phosphoryls in platelets. Contribution by phosphodiesterase-catalyzed hydrolysis of cAMP. J Biol Chem 258: 1544–1558.
[43]  Dawis S, Walseth T, Deeg M, Heyman R, Graeff R, et al. (1989) Adenosine triphosphate utilization rates and metabolic pool sizes in intact cells measured by transfer of 18O from water. Biophys J 55: 79–99. doi: 10.1016/s0006-3495(89)82782-1
[44]  Zeleznikar R, Heyman R, Graeff R, Walseth T, Dawis S, et al. (1990) Evidence for compartmen-talized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. J Biol Chem 265: 300–311.
[45]  Zeleznikar R, Goldberg N (1991) Kinetics and compartmentation of energy metabolism in intact skeletal muscle determined from 18O labeling of metabolite phosphoryls. J Biol Chem 266: 15110–15119.
[46]  Janssen E, Dzeja P, Oerlemans F, Simonetti A, Heerschap A, et al. (2000) Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement. EMBO J 19: 6371–6381. doi: 10.1093/emboj/19.23.6371
[47]  Aksentijevi? D, Lygate C, Makinen K, Zervou S, Sebag-Montefiore L, et al. (2010) High-energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes. Eur J Heart Fail 12: 1282–1289. doi: 10.1093/eurjhf/hfq174
[48]  Olson L, Schroeder W, Robertson R, Goldberg N, Walseth T (1996) Suppression of adenylate kinase catalyzed phosphotransfer precedes and is associated with glucose-induced insulin secretion in intact HIT-t15 cells. J Biol Chem 271: 16544–16552. doi: 10.1074/jbc.271.28.16544
[49]  Dzeja P, Pucar D, Redfield M, Burnett J, Terzic A (1999) Reduced activity of enzymes coupling ATP-generating with ATP-consuming processes in the failing myocardium. Mol Cell Biochem 201: 33–40.
[50]  Beard D, Kushmerick M (2009) Strong inference for systems biology. PLoS Comput Biol 5: e1000459. doi: 10.1371/journal.pcbi.1000459
[51]  Des Rosiers C, Chatham J (2005) Myocardial phenotyping using isotopomer analysis of metabolic fluxes. Biochem Soc Trans 33: 1413–1417. doi: 10.1042/bst20051413
[52]  Des Rosiers C, Labarthe F, Lloyd S, Chatham J (2011) Cardiac anaplerosis in health and disease: food for thought. Cardiovasc Res 90: 210–219. doi: 10.1093/cvr/cvr055
[53]  Boyer PD, Luchsinger WW, Falcone AB (1956) 18O and 32P exchange reactions of mitochondria in relation to oxidative phosphorylation. J Biol Chem 223: 405–421.
[54]  Berkich D, Williams G, Masiakos P, Smith M, Boyer P, et al. (1991) Rates of various reactions catalyzed by ATP synthase as related to the mechanism of ATP synthesis. J Biol Chem 266: 123–129.
[55]  Webb M, Trentham D (1981) The mechanism of ATP hydrolysis catalyzed by myosin and acto-myosin, using rapid reaction techniques to study oxygen exchange. J Biol Chem 256: 10910–10916.
[56]  Dale M, Hackney D (1987) Analysis of positional isotope exchange in ATP by cleavage of the βP-OγP bond. demonstration of negligible positional isotope exchange by myosin. Biochemistry 26: 8365–8372. doi: 10.1021/bi00399a051
[57]  Schryer D, Vendelin M, Peterson P (2011) Symbolic flux analysis for genome-scale metabolic net-works. BMC Syst Biol 5: 81. doi: 10.1186/1752-0509-5-81
[58]  Wiechert W, de Graaf A (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55: 101–117. doi: 10.1002/(sici)1097-0290(19970705)55:1<101::aid-bit12>3.0.co;2-p
[59]  Brown P, Byrne G, Hindmarsh A (1989) VODE: A variable-coefficient ODE solver. SIAM J Sci Stat Comput 10: 1038. doi: 10.1137/0910062
[60]  Peterson P (2009) F2PY: a tool for connecting Fortran and Python programs. Int J Comput Sci Eng 4: 296–305. doi: 10.1504/ijcse.2009.029165

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133