全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chapter 10: Mining Genome-Wide Genetic Markers

DOI: 10.1371/journal.pcbi.1002828

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genome-wide association study (GWAS) aims to discover genetic factors underlying phenotypic traits. The large number of genetic factors poses both computational and statistical challenges. Various computational approaches have been developed for large scale GWAS. In this chapter, we will discuss several widely used computational approaches in GWAS. The following topics will be covered: (1) An introduction to the background of GWAS. (2) The existing computational approaches that are widely used in GWAS. This will cover single-locus, epistasis detection, and machine learning methods that have been recently developed in biology, statistic, and computer science communities. This part will be the main focus of this chapter. (3) The limitations of current approaches and future directions.

References

[1]  Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, et al. (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36: 1133–1137. doi: 10.1038/ng1104-1133
[2]  The International HapMap Consortium (2003) The international hapmap project. Nature 426(6968): 789–796. doi: 10.1038/nrg1351
[3]  Saxena R, Voight B, Lyssenko V, Burtt N, de Bakker P, et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331–1336. doi: 10.1126/science.1142358
[4]  Scuteri A, Sanna S, Chen W, Uda M, Albai G, et al. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3(7): e115 doi:10.1371/journal.pgen.0030115.
[5]  The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678.
[6]  Weedon M, Lettre G, Freathy R, Lindgren C, Voight B, et al. (2007) A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet 39: 1245–1250. doi: 10.1038/ng2121
[7]  Hirschhorn J, Daly M (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6: 95–108. doi: 10.1038/nrg1521
[8]  McCarthy M, Abecasis G, Cardon L, Goldstein D, Little J, et al. (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5): 356–369. doi: 10.1038/nrg2344
[9]  Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The international hapmap project web site. Genome Res 15: 1592. doi: 10.1101/gr.4413105
[10]  The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.
[11]  Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7(10): 781–791. doi: 10.1038/nrg1916
[12]  Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, et al. (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357: 443–453. doi: 10.1056/nejmoa072366
[13]  Westfall PH, Young SS (1993) Resampling-based multiple testing. Wiley: New York.
[14]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1): 289–300.
[15]  Zhang X, Zou F, Wang W (2008) FastANOVA: an efficient algorithm for genome-wide association study. KDD 2008: 821–829. doi: 10.1145/1401890.1401988
[16]  Zhang X, Zou F, Wang W (2009) FastChi: an effcient algorithm for analyzing gene-gene interactions. PSB 2009: 528–539. doi: 10.1142/9789812836939_0050
[17]  Zhang X, Pan F, Xie Y, Zou F, Wang W (2010) COE: a general approach for efficient genome-wide two-locus epistatic test in disease association study. J Comput Biol 17(3): 401–415. doi: 10.1089/cmb.2009.0155
[18]  Zhang X, Huang S, Zou F, Wang W (2010) TEAM: Efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics 26(12): 217–227. doi: 10.1093/bioinformatics/btq186
[19]  Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press and McGraw-Hill.
[20]  Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, et al. (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69: 138–147. doi: 10.1086/321276
[21]  Cordell HJ (2002) Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 11: 2463–2468. doi: 10.1093/hmg/11.20.2463
[22]  Wason J, Dudbridge F (2010) Comparison of multimarker logistic regression models, with application to a genomewide scan of schizophrenia. BMC Genet 11: 80. doi: 10.1186/1471-2156-11-80
[23]  Yang C, Wan X, Yang Q, Xue H, Tang N, et al. (2011) A hidden two- locus disease association pattern in genome-wide association studies. BMC Bioinformatics 12: 156. doi: 10.1186/1471-2105-12-156
[24]  Hoh J, Ott J (2003) Mathematical multi-locus approaches to localizing complex human trait genes. Nat Rev Genet 4: 701–709. doi: 10.1038/nrg1155
[25]  Musani S, Shriner D, Liu N, Feng R, Coffey C, et al. (2007) Detection of gene×gene interactions in genome-wide association studies of human population data. Hum Hered 63(2): 67–84. doi: 10.1159/000099179

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133