全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chapter 8: Biological Knowledge Assembly and Interpretation

DOI: 10.1371/journal.pcbi.1002858

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most methods for large-scale gene expression microarray and RNA-Seq data analysis are designed to determine the lists of genes or gene products that show distinct patterns and/or significant differences. The most challenging and rate-liming step, however, is to determine what the resulting lists of genes and/or transcripts biologically mean. Biomedical ontology and pathway-based functional enrichment analysis is widely used to interpret the functional role of tightly correlated or differentially expressed genes. The groups of genes are assigned to the associated biological annotations using Gene Ontology terms or biological pathways and then tested if they are significantly enriched with the corresponding annotations. Unlike previous approaches, Gene Set Enrichment Analysis takes quite the reverse approach by using pre-defined gene sets. Differential co-expression analysis determines the degree of co-expression difference of paired gene sets across different conditions. Outcomes in DNA microarray and RNA-Seq data can be transformed into the graphical structure that represents biological semantics. A number of biomedical annotation and external repositories including clinical resources can be systematically integrated by biological semantics within the framework of concept lattice analysis. This array of methods for biological knowledge assembly and interpretation has been developed during the past decade and clearly improved our biological understanding of large-scale genomic data from the high-throughput technologies.

References

[1]  Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22(3): 281–285. doi: 10.1038/10343
[2]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1): 25–29.
[3]  Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31(1): 19–20. doi: 10.1038/ng0502-19
[4]  Al-Shahrour F, Díaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20(4): 578–580. doi: 10.1093/bioinformatics/btg455
[5]  Boyle EI, Weng S, Gollub J, Jin H, Botstein D, et al. (2004) TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20(18): 3710–3715. doi: 10.1093/bioinformatics/bth456
[6]  Chung HJ, Kim M, Park CH, Kim J, Kim JH (2004) ArrayXPath: mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics. Nucleic Acids Res 32(Web Server issue): W460–464. doi: 10.1093/nar/gkh476
[7]  Zhang B, Schmoyer D, Kirov S, Snoddy J (2004) GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics 5: 16.
[8]  Zhong S, Storch KF, Lipan O, Kao MC, Weitz CJ, et al. (2004) GoSurfer: a graphical interactive tool for comparative analysis of large gene sets in Gene Ontology space. Appl Bioinformatics 3(4): 261–264. doi: 10.2165/00822942-200403040-00009
[9]  Chung HJ, Park CH, Han MR, Lee S, Ohn JH, et al. (2005) ArrayXPath II: mapping and visualizing microarray gene-expression data with biomedical ontologies and integrated biological pathway resources using Scalable Vector Graphics. Nucleic Acids Res 33(Web Server issue): W621–626. doi: 10.1093/nar/gki450
[10]  Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3): 267–273. doi: 10.1038/ng1180
[11]  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43): 15545–15550. doi: 10.1073/pnas.0506580102
[12]  Cho SB, Kim J, Kim JH (2009) Identifying set-wise differential co-expression in gene expression microarray data. BMC Bioinformatics 10: 109. doi: 10.1186/1471-2105-10-109
[13]  Kim J, Chung HJ, Jung Y, Kim KK, Kim JH (2008) BioLattice: a framework for the biological interpretation of microarray gene expression data using concept lattice analysis. J Biomed Inform 41(2): 232–241. doi: 10.1016/j.jbi.2007.10.003
[14]  Yue L, Reisdorf WC (2005) Pathway and ontology analysis: emerging approaches connecting transcriptome data and clinical endpoints. Curr Mol Med 5(1): 11–21. doi: 10.2174/1566524053152906
[15]  Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, et al. (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38(Database issue): D473–479. doi: 10.1093/nar/gkp875
[16]  Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22(13): 1600–1607. doi: 10.1093/bioinformatics/btl140
[17]  Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23(2): 257–258. doi: 10.1093/bioinformatics/btl567
[18]  Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1): 1–13. doi: 10.1093/nar/gkn923
[19]  Goeman JJ, Buhlmann P (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23(8): 980–987. doi: 10.1093/bioinformatics/btm051
[20]  Bild AH, Yao G, Chang JT, Wang Q, Potti A, et al. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074): 353–357. doi: 10.1038/nature04296
[21]  Potti A, Dressman HK, Bild A, Riedel RF, Chan G (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12(11): 1294–1300. doi: 10.1038/nm1491
[22]  Barry WT, Nobel AB, Wright FA (2005) Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21(9): 1943–1949. doi: 10.1093/bioinformatics/bti260
[23]  Li KC (2002) Genome-wide co-expression dynamics: theory and application. Proc Natl Acad Sci U S A 99(26): 16875–16880. doi: 10.1073/pnas.252466999
[24]  Lai Y, Wu B, Chen L, Zhao H (2004) A statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics 20(17): 3146–55. doi: 10.1093/bioinformatics/bth379
[25]  Choi JK, Yu U, Yoo OJ, Kim S (2005) Differential co-expression analysis using microarray data and its application to human cancer. Bioinformatics 21(24): 4348–4355. doi: 10.1093/bioinformatics/bti722
[26]  Kostka D, Spang R (2004) Finding disease specific alterations in the co-expression of genes. Bioinformatics 20 Suppl 1: i194–199. doi: 10.1093/bioinformatics/bth909
[27]  Watson M (2006) CoXpress: differential co-expression in gene expression data. BMC Bioinformatics 7: 509.
[28]  Kim JH, Ha IS, Hwang CI, Lee YJ, Kim Y, et al. (2004) Gene expression profiling of anti-GBM glomerulonephritis model: the role of NFkB in immune complex-mediated kidney disease. Kidney International 66(5): 1826–1837. doi: 10.1111/j.1523-1755.2004.00956.x
[29]  Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Berlin; New York: Springer.
[30]  Emmert-Streib F, Dehmer M (2010) Medical Biostatistics for Complex Diseases. Wiley doi: 10.1002/9783527630332

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133