全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chapter 1: Biomedical Knowledge Integration

DOI: 10.1371/journal.pcbi.1002826

Full-Text   Cite this paper   Add to My Lib

Abstract:

The modern biomedical research and healthcare delivery domains have seen an unparalleled increase in the rate of innovation and novel technologies over the past several decades. Catalyzed by paradigm-shifting public and private programs focusing upon the formation and delivery of genomic and personalized medicine, the need for high-throughput and integrative approaches to the collection, management, and analysis of heterogeneous data sets has become imperative. This need is particularly pressing in the translational bioinformatics domain, where many fundamental research questions require the integration of large scale, multi-dimensional clinical phenotype and bio-molecular data sets. Modern biomedical informatics theory and practice has demonstrated the distinct benefits associated with the use of knowledge-based systems in such contexts. A knowledge-based system can be defined as an intelligent agent that employs a computationally tractable knowledge base or repository in order to reason upon data in a targeted domain and reproduce expert performance relative to such reasoning operations. The ultimate goal of the design and use of such agents is to increase the reproducibility, scalability, and accessibility of complex reasoning tasks. Examples of the application of knowledge-based systems in biomedicine span a broad spectrum, from the execution of clinical decision support, to epidemiologic surveillance of public data sets for the purposes of detecting emerging infectious diseases, to the discovery of novel hypotheses in large-scale research data sets. In this chapter, we will review the basic theoretical frameworks that define core knowledge types and reasoning operations with particular emphasis on the applicability of such conceptual models within the biomedical domain, and then go on to introduce a number of prototypical data integration requirements and patterns relevant to the conduct of translational bioinformatics that can be addressed via the design and use of knowledge-based systems.

References

[1]  Coopers PW (2008) Research rewired. 48 p.
[2]  Casey K, Elwell K, Friedman J, Gibbons D, Goggin M, et al.. (2008) A broken pipeline? Flat funding of the NIH puts a generation of science at risk. 24 p.
[3]  Payne PR, Johnson SB, Starren JB, Tilson HH, Dowdy D (2005) Breaking the translational barriers: the value of integrating biomedical informatics and translational research. J Investig Med 53: 192–200. doi: 10.2310/6650.2005.00402
[4]  Research NDsPoC (1997) NIH director's panel on clinical research report. Bethesda, MD: National Institutes of Health.
[5]  Sung NS, Crowley WF Jr, Genel M, Salber P, Sandy L, et al. (2003) Central challenges facing the national clinical research enterprise. JAMA 289: 1278–1287. doi: 10.1001/jama.289.10.1278
[6]  Butte AJ (2008) Medicine. The ultimate model organism. Science 320: 325–327. doi: 10.1126/science.1158343
[7]  Chung TK, Kukafka R, Johnson SB (2006) Reengineering clinical research with informatics. J Investig Med 54: 327–333. doi: 10.2310/6650.2006.06014
[8]  Kaiser J (2008) U.S. budget 2009. NIH hopes for more mileage from roadmap. Science 319: 716. doi: 10.1126/science.319.5864.716b
[9]  Kush RD, Helton E, Rockhold FW, Hardison CD (2008) Electronic health records, medical research, and the Tower of Babel. N Engl J Med 358: 1738–1740. doi: 10.1056/nejmsb0800209
[10]  Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O, et al. (2007) Advancing translational research with the Semantic Web. BMC Bioinformatics 8 Suppl 3: S2. doi: 10.1186/1471-2105-8-s3-s2
[11]  Fridsma DB, Evans J, Hastak S, Mead CN (2008) The BRIDG project: a technical report. J Am Med Inform Assoc 15: 130–137. doi: 10.1197/jamia.m2556
[12]  Maojo V, García-Remesal M, Billhardt H, Alonso-Calvo R, Pérez-Rey D, et al. (2006) Designing new methodologies for integrating biomedical information in clinical trials. Methods Inf Med 45: 180–185.
[13]  Ash JS, Anderson NR, Tarczy-Hornoch P (2008) People and organizational issues in research systems implementation. J Am Med Inform Assoc 15: 283–289. doi: 10.1197/jamia.m2582
[14]  Payne PR, Mendonca EA, Johnson SB, Starren JB (2007) Conceptual knowledge acquisition in biomedicine: a methodological review. J Biomed Inform 40: 582–602. doi: 10.1016/j.jbi.2007.03.005
[15]  Richesson RL, Krischer J (2007) Data standards in clinical research: gaps, overlaps, challenges and future directions. J Am Med Inform Assoc 14: 687–696. doi: 10.1197/jamia.m2470
[16]  Erickson J (2008) A decade and more of UML: an overview of UML semantic and structural issues and UML field use. Journal of Database Management 19: I–Vii.
[17]  van Bemmel JH, van Mulligen EM, Mons B, van Wijk M, Kors JA, et al. (2006) Databases for knowledge discovery. Examples from biomedicine and health care. Int J Med Inform 75: 257–267. doi: 10.1016/j.ijmedinf.2005.08.012
[18]  Oster S, Langella S, Hastings S, Ervin D, Madduri R, et al. (2008) caGrid 1.0: an enterprise grid infrastructure for biomedical research. J Am Med Inform Assoc 15: 138–149. doi: 10.1197/jamia.m2522
[19]  Kukafka R, Johnson SB, Linfante A, Allegrante JP (2003) Grounding a new information technology implementation framework in behavioral science: a systematic analysis of the literature on IT use. J Biomed Inform 36: 218–227. doi: 10.1016/j.jbi.2003.09.002
[20]  Zerhouni EA (2005) Translational and clinical science–time for a new vision. N Engl J Med 353: 1621–1623. doi: 10.1056/nejmsb053723
[21]  Sim I (2008) Trial registration for public trust: making the case for medical devices. J Gen Intern Med 23 Suppl 1: 64–68. doi: 10.1007/s11606-007-0300-7
[22]  Preece A (2001) Evaluating verification and validation methods in knowledge engineering. Micro-Level Knowledge Management: 123–145.
[23]  Brachman RJ, McGuinness DL (1988) Knowledge representation, connectionism and conceptual retrieval. Proceedings of the 11th annual international ACM SIGIR conference on research and development in information retrieval. Grenoble, France: ACM Press.
[24]  Compton P, Jansen R (1990) A philosophical basis for knowledge acquisition. Knowledge Acquisition 2: 241–257. doi: 10.1016/s1042-8143(05)80017-2
[25]  Gaines BR (1989) Social and cognitive processes in knowledge acquisition. Knowledge Acquisition 1: 39–58. doi: 10.1016/s1042-8143(89)80004-4
[26]  Gaines BR, Shaw MLG (1993) Knowledge acquisition tools based on personal construct psychology.
[27]  Liou YI (1990) Knowledge acquisition: issues, techniques, and methodology. Orlando, Florida, United States: ACM Press. pp. 212–236.
[28]  Yihwa Irene L (1990) Knowledge acquisition: issues, techniques, and methodology. Proceedings of the 1990 ACM SIGBDP conference on trends and directions in expert systems. Orlando, Florida, United States: ACM Press.
[29]  Glaser R (1984) Education and thinking: the role of knowledge. American Psychologist 39: 93–104. doi: 10.1037/0003-066x.39.2.93
[30]  Hiebert J (1986) Procedural and conceptual knowledge: the case of mathematics. London: Lawrence Erlbaum Associates.
[31]  McCormick R (1997) Conceptual and procedural Knowledge. International Journal of Technology and Design Education 7: 141–159. doi: 10.1023/a:1008819912213
[32]  Scribner S (1985) Knowledge at work. Anthropology & Education Quarterly 16: 199–206. doi: 10.1525/aeq.1985.16.3.05x1486d
[33]  Barsalow LW, Simmons WK, Barbey AK, Wilson CD (2003) Grounding conceptual knowledge in modaltiy-specific systems. Trends Cogn Sci 7: 84–91. doi: 10.1016/s1364-6613(02)00029-3
[34]  Borlawsky T, Li J, Jalan S, Stern E, Williams R, et al. (2005) Partitioning knowledge bases between advanced notification and clinical decision support systems. AMIA Annu Symp Proc 901. doi: 10.1016/j.dss.2006.02.006
[35]  Newell A, Simon HA (1981) Computer science as empirical inquiry: symbols and search. In: Haugeland J, editor. Mind design. Cambridge: MIT Press/Bradfor Books. pp. 35–66.
[36]  Newell A, Simon HA (1975) Computer science as empirical inquiry: symbols and search. Minneapolis.
[37]  Kelly GA (1955) The psychology of personal constructs. New York: Norton. 2 v. (1218).
[38]  Hawkins D (1983) An analysis of expert thinking. Int J Man-Mach Stud 18: 1–47. doi: 10.1016/s0020-7373(83)80002-9
[39]  Zhang J (2002) Representations of health concepts: a cognitive perspective. J Biomed Inform 35: 17–24. doi: 10.1016/s1532-0464(02)00003-5
[40]  Horsky J, Kaufman DR, Oppenheim MI, Patel VL (2003) A framework for analyzing the cognitive complexity of computer-assisted clinical ordering. J Biomed Inform 36: 4–22. doi: 10.1016/s1532-0464(03)00062-5
[41]  Horsky J, Kaufman DR, Patel VL (2003) The cognitive complexity of a provider order entry interface. AMIA Annu Symp Proc 294–298.
[42]  Horsky J, Kaufman DR, Patel VL (2004) Computer-based drug ordering: evaluation of interaction with a decision-support system. Medinfo 11: 1063–1067.
[43]  Horsky J, Kuperman GJ, Patel VL (2005) Comprehensive analysis of a medication dosing error related to CPOE. J Am Med Inform Assoc 12: 377–382. doi: 10.1197/jamia.m1740
[44]  Horsky J, Zhang J, Patel VL (2005) To err is not entirely human: complex technology and user cognition. J Biomed Inform 38: 264–266. doi: 10.1016/j.jbi.2005.05.002
[45]  Patel VL, Arocha JF, Diermeier M, Greenes RA, Shortliffe EH (2001) Methods of cognitive analysis to support the design and evaluation of biomedical systems: the case of clinical practice guidelines. J Biomed Inform 34: 52–66. doi: 10.1006/jbin.2001.1002
[46]  Patel VL, Arocha JF, Kaufman DR (2001) A primer on aspects of cognition for medical informatics. J Am Med Inform Assoc 8: 324–343. doi: 10.1136/jamia.2001.0080324
[47]  Wikipedia (2006) Semiotics. Wikipedia.
[48]  Campbell KE, Oliver DE, Spackman KA, Shortliffe EH (1998) Representing thoughts, words, and things in the UMLS. J Am Med Inform Assoc 5: 421–431. doi: 10.1136/jamia.1998.0050421
[49]  Harris Z (1976) On a theory of language. The Journal of Philosophy 73: 253–276.
[50]  Friedman C, Kra P, Rzhetsky A (2002) Two biomedical sublanguages: a description based on the theories of Zellig Harris. J Biomed Inform 35: 222–235. doi: 10.1016/s1532-0464(03)00012-1
[51]  Grishman R, Kittredge R (1986) Analyzing language in restricted domains: sublangauge description and processing. Hillsdale, NJ.: Lawrence Erlbaum.
[52]  Starren J (1997) From multimodal sublanguages to medical data presentations. New York: Columbia University.
[53]  Alan LR, Chris W, Jeremy R, Angus R (2001) Untangling taxonomies and relationships: personal and practical problems in loosely coupled development of large ontologies. Proceedings of the international conference on knowledge capture. Victoria, British Columbia, Canada: ACM Press.
[54]  Canas AJ, Leake DB, Wilson DC (1999) Managing, mapping, and manipulating conceptual knowledge. Menlo Park: AAAI Press. pp. 10–14.
[55]  Ian N, Adam P (2001) Towards a standard upper ontology. Proceedings of the international conference on formal ontology in information systems - volume 2001. Ogunquit, Maine, United States: ACM Press.
[56]  Joachim H, Gerd S, Rudolf W, Uta W (2000) Conceptual knowledge discovery and data analysis. Springer-Verlag. pp. 421–437.
[57]  Tayar N (1993) A model for developing large shared knowledge bases. Washington, (D.C.): ACM Press. pp. 717–719.
[58]  Boy GA (1997) The group elicitation method for participatory design and usability testing. interactions 4: 27–33. doi: 10.1145/245129.245132
[59]  Morgan MS, Martz Jr WB (2004) Group consensus: do we know it when we see it? Proceedings of the 37th annual Hawaii international conference on system sciences (HICSS'04) - track 1 - volume 1: IEEE Computer Society.
[60]  Wood WC, Roth RM (1990) A workshop approach to acquiring knowledge from single and multiple experts. Orlando, Florida, United States: ACM Press. pp. 275–300.
[61]  Adria HL, William AS, Stephen DK (2003) GMS: preserving multiple expert voices in scientific knowledge management. San Francisco, California: ACM Press. pp. 1–4.
[62]  John H, Val K, Tom R, Hans A (1995) The role of ethnography in interactive systems design. interactions 2: 56–65. doi: 10.1145/205350.205358
[63]  Wickstrom G, Bendix T (2000) The “Hawthorne effect”–what did the original Hawthorne studies actually show? Scand J Work Environ Health 26: 363–367.
[64]  Rahat I, Richard G, Anne J (2005) A general approach to ethnographic analysis for systems design. Coventry, United Kingdom: ACM Press. pp. 34–40.
[65]  Rugg G, McGeorge P (1997) The sorting techniques: a tutorial paper on card sorts, picture sorts and item sorts. Expert Systems 14: 80–93. doi: 10.1111/1468-0394.00045
[66]  Cimiano P, Hotho A, Stumme G, Tane J (2004) Conceptual knowledge processing with formal concept analysis and ontologies. 189 p.
[67]  Cole R, Becker P (2004) Agreement contexts in formal concept analysis. 172 p.
[68]  Sowa JF (1980) A conceptual schema for knowledge-based systems. Pingree Park, Colorado: ACM Press. pp. 193–195.
[69]  Salomons OW, van Houten FJAM, Kals HJJ (1995) Conceptual graphs in constraint based re-design. Proceedings of the third ACM symposium on solid modeling and applications. Salt Lake City, Utah, United States: ACM Press.
[70]  Yang G, Oh J (1993) Knowledge acquisition and retrieval based on conceptual graphs. Proceedings of the 1993 ACM/SIGAPP symposium on applied computing: states of the art and practice. Indianapolis, Indiana, United States: ACM Press.
[71]  Campbell JR, Carpenter P, Sneiderman C, Cohn S, Chute CG, et al. (1997) Phase II evaluation of clinical coding schemes: completeness, taxonomy, mapping, definitions, and clarity. CPRI Work Group on Codes and Structures. J Am Med Inform Assoc 4: 238–251. doi: 10.1136/jamia.1997.0040238
[72]  Campbell KE, Oliver DE, Shortliffe EH (1998) The Unified Medical Language System: toward a collaborative approach for solving terminologic problems. J Am Med Inform Assoc 5: 12–16. doi: 10.1136/jamia.1998.0050012
[73]  Cimino JJ (2000) From data to knowledge through concept-oriented terminologies: experience with the Medical Entities Dictionary. J Am Med Inform Assoc 7: 288–297. doi: 10.1136/jamia.2000.0070288
[74]  TOCKIT (2006) Tupleware. 0.1 ed: Technische Universitaet Darmstadt and University of Queensland.
[75]  Hereth J, Stumme G, Wille R, Wille U (2000) Conceptual knowledge discovery and data analysis. Springer-Verlag. pp. 421–437.
[76]  Priss U (2006) Formal concept analysis in information science. In: Blaise C, editor. Annual review of information science and technology. Medford, NJ: Information Today, Inc.
[77]  Polson PG (1987) A quantitative theory of human-computer interaction. Interfacing thought: cognitive aspects of human-computer interaction. MIT Press. pp. 184–235.
[78]  Polson PG, Lewis C, Rieman J, Wharton C (1992) Cognitive walkthroughs: a method for theory-based evaluation of user interfaces. Int J Man-Mach Stud 36: 741–773. doi: 10.1016/0020-7373(92)90039-n
[79]  Alvarez R (2002) Discourse analysis of requirements and knowledge elicitation interviews. IEEE Computer Society. 255 p.
[80]  Davidson JE (1977) Topics in discourse analysis. University of British Columbia.
[81]  Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB (1994) A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1: 161–174. doi: 10.1136/jamia.1994.95236146
[82]  Friedman C, Hripcsak G (1998) Evaluating natural language processors in the clinical domain. Methods Inf Med 37: 334–344.
[83]  Friedman C, Hripcsak G (1999) Natural language processing and its future in medicine. Acad Med 74: 890–895. doi: 10.1097/00001888-199908000-00012
[84]  Friedman C, Hripcsak G, Shablinsky I (1998) An evaluation of natural language processing methodologies. Proc AMIA Symp: 855–859.
[85]  Hripcsak G, Friedman C, Alderson PO, DuMouchel W, Johnson SB, et al. (1995) Unlocking clinical data from narrative reports: a study of natural language processing. Ann Intern Med 122: 681–688. doi: 10.7326/0003-4819-122-9-199505010-00007
[86]  Corbridge C, Rugg G, Major NO, Shadbolt NR, Burton AM (1994) Laddering: technique and tool use in knowledge acquisition. Knowledge Acquisition 6: 315–341. doi: 10.1006/knac.1994.1016
[87]  Agostini A, Albolino S, Boselli R, De Michelis G, De Paoli F, et al.. (2003) Stimulating knowledge discovery and sharing; 2003; Sanibel Island, Florida, United States: ACM Press. pp. 248–257.
[88]  Roth RM, Wood WC (1990) A Delphi approach to acquiring knowledge from single and multiple experts; 1990; Orlando, Florida, United States: ACM Press. pp. 301–324.
[89]  Embi PJ, Payne PR (2009) Clinical research informatics: challenges, opportunities and definition for an emerging domain. J Am Med Inform Assoc 16: 316–327. doi: 10.1197/jamia.m3005
[90]  Crabtree BF, Miller WL (1992) Doing qualitative research. Newbury Park, CA: Sage.
[91]  Glaser B, Strauss A (1967) The discovery of grounded theory: strategies for qualitative research. Piscataway, NJ: Aldine Transaction. 271 p.
[92]  Patton MQ (2001) Qualitative research & evaluation methods. New York: Sage Publications. 688 p.
[93]  Khan SA, Kukafka R, Payne PR, Bigger JT, Johnson SB (2007) A day in the life of a clinical research coordinator: observations from community practice settings. Medinfo 12: 247–251.
[94]  Khan SA, Payne PR, Johnson SB, Bigger JT, Kukafka R (2006) Modeling clinical trials workflow in community practice settings. AMIA Annual Symposium proceedings/AMIA Symposium 419–423.
[95]  Rayhupathi W, Umar A (2008) Exploring a model-driven architecture (MDA) approach to health care information systems development. Int J Med Inform 77: 305–314. doi: 10.1016/j.ijmedinf.2007.04.009
[96]  Aksit M, Kurtev I (2008) Elsevier special issue on foundations and applications of model driven architecture. Science of Computer Programming 73: 1–2. doi: 10.1016/j.scico.2008.05.001
[97]  Shurville S (2007) Model driven architecture and ontology development. Interactive Learning Environments 15: 96–99.
[98]  Uhl A (2003) Model driven architecture is ready for prime time. IEEE Software 20: 70-+. doi: 10.1109/ms.2003.1231155
[99]  Soley RM (2003) Model driven architecture: the evolution of object-oriented systems? Object-Oriented Information Systems 2817: 2–2. doi: 10.1007/978-3-540-45242-3_2
[100]  Vanderperren Y, Mueller W, Dehaene W (2008) UML for electronic systems design: a comprehensive overview. Design Automation for Embedded Systems 12: 261–292. doi: 10.1007/s10617-008-9028-9
[101]  Dobing B, Parsons J (2008) Dimensions of UML diagram use: a survey of practitioners. Journal of Database Management 19: 1–18. doi: 10.4018/jdm.2008010101
[102]  Batra D (2008) Unified modeling language (UML) topics: the past, the problems, and the prospects. Journal of Database Management 19: I–Vii.
[103]  Komatsoulis GA, Warzel DB, Hartel FW, Shanbhag K, Chilukuri R, et al. (2008) caCORE version 3: Implementation of a model driven, service-oriented architecture for semantic interoperability. J Biomed Inform 41: 106–123. doi: 10.1016/j.jbi.2007.03.009
[104]  Kunz I, Lin MC, Frey L (2009) Metadata mapping and reuse in caBIG. BMC Bioinformatics 10 Suppl 2: S4. doi: 10.1186/1471-2105-10-s2-s4
[105]  Chakravarthy S, Whang WK, Navathe SB (1994) A logic-based approach to query-processing in federated databases. Information Sciences 79: 1–28. doi: 10.1016/0020-0255(94)90037-x
[106]  Ariyachandra T, Watson HJ (2008) Which data warehouse architecture is best? Communications of the ACM 51: 146–147. doi: 10.1145/1400181.1400213
[107]  DeWitt JG, Hampton PM (2005) Development of a data warehouse at an academic health system: knowing a place for the first time. Acad Med 80: 1019–1025. doi: 10.1097/00001888-200511000-00009
[108]  Braa J (2005) A data warehouse approach can manage multiple data sets. Bull World Health Organ 83: 638–639.
[109]  Yu J, Benatallah B, Casati F, Daniel F (2008) Understanding mashup development. IEEE Internet Computing 12: 44–52. doi: 10.1109/mic.2008.114
[110]  Scotch M, Yip KY, Cheung KH (2008) Development of grid-like applications for public health using web 2.0 mashup techniques. J Am Med Inform Assoc 15: 783–786. doi: 10.1197/jamia.m2731
[111]  Sahoo SS, Bodenreider O, Rutter JL, Skinner KJ, Sheth AP (2008) An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence. J Biomed Inform 41: 752–765. doi: 10.1016/j.jbi.2008.02.006
[112]  Cheung KH, Yip KY, Townsend JP, Scotch M (2008) HCLS 2.0/3.0: Health care and life sciences data mashup using Web 2.0/3.0. J Biomed Inform 41: 694–705. doi: 10.1016/j.jbi.2008.04.001
[113]  Cheung KH, Kashyap V, Luciano JS, Chen HJ, Wang YM, et al. (2008) Semantic mashup of biomedical data. J Biomed Inform s 41: 683–686. doi: 10.1016/j.jbi.2008.08.003
[114]  Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J (2008) Bio2RDF: Towards a mashup to build bioinformatics knowledge systems. J Biomed Inform 41: 706–716. doi: 10.1016/j.jbi.2008.03.004
[115]  Marks P (2006) ‘Mashup’ websites are a dream come true for hackers. New Scientist 190: 28–29.
[116]  Payne PR, Borlawsky T, Kwok A, Greaves A (2008) Supporting the design of translational clinical studies through the generation and verification of conceptual knowledge-anchored hypotheses. AMIA Annu Symp Proc 566–570.
[117]  Mansmann U (2005) Genomic profiling - interplay between clinical epidemiology, bioinformatics and biostatistics. Methods Inf Med 44: 454–460.
[118]  Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Transactions on Neural Networks 16: 645–678. doi: 10.1109/tnn.2005.845141
[119]  Ardekani AM, Akhondi MM, Sadeghi MR (2008) Application of genomic and proteomic technologies to early detection of cancer. Archives of Iranian Medicine 11: 427–434.
[120]  De Fonzo V, Aluffi-Pentini F, Parisi V (2007) Hidden Markov models in bioinformatics. Curr Bioinform 2: 49–61. doi: 10.2174/157489307779314348
[121]  Feng J, Naiman DQ, Cooper B (2007) Probability-based pattern recognition and statistical framework for randomization: modeling tandem mass spectrum/peptide sequence false match frequencies. Bioinformatics 23: 2210–2217. doi: 10.1093/bioinformatics/btm267
[122]  Oehmen CS, Straatsma TP, Anderson GA, Orr G, Webb-Robertson BJM, et al. (2006) New challenges facing integrative biological science in the post-genomic era. Journal of Biological Systems 14: 275–293. doi: 10.1142/s0218339006001805
[123]  Way JC, Silver PA (2007) Systems engineering without an engineer: why we need systems biology. Complexity 13: 22–29. doi: 10.1002/cplx.20198
[124]  Knaup P, Ammenwerth E, Brandner R, Brigl B, Fischer G, et al. (2004) Towards clinical bioinformatics: advancing genomic medicine with informatics methods and tools. Methods Inf Med 43: 302–307.
[125]  Levy D, Dondero R, Veronneau P (2008) Research rewired. Price Waterhouse Coopers. 48 p.
[126]  Webb CP, Pass HI (2004) Translation research: from accurate diagnosis to appropriate treatment. J Transl Med 2: 35.
[127]  (2012) Merriam Webster online dictionary. Merriam Webster.
[128]  (2012) Wordnet. Princeton University.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133