Following an inspiring idea due to
D. Gross, we arrive at a
topological Planck energy Ep and a corresponding topological Planck length effectively scaling the Planck scale from
esoterically large and equally esoterically small numbers to a manageably where P(H) is the famous Hardy’s probability for
quantum entanglement which amounts to almost 9 percent and Based on these results, we conclude the equivalence of Einstein-Rosen “wormhole” bridges and
Einstein’s Podolsky-Rosen’s spooky action at a distance. In turn these results
are shown to be consistent with distinguishing two energy components which
results in ,
namely the quantum zero set particle component which we can measure and the quantum empty set
wave component which we cannot measure ,
References
[1]
D. Gross, Physics Today, Vol. 42, 1989, p. 9. http://dx.doi.org/10.1063/1.2811040
[2]
M.S. El Naschie and Atef Helal, International Journal of Astronomy and Astrophysics, Vol. 3, 2013, pp. 318-343.
[3]
M. S. El Naschie, Journal of Quantum Information Science, Vol. 1, 2011, pp. 50-53. http://dx.doi.org/10.4236/jqis.2011.12007
[4]
M. S. El Naschie, Journal of Quantum Information Science, Vol. 3, 2013, pp. 23-26. http://dx.doi.org/10.4236/jqis.2013.31006
[5]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 19, 2004, pp. 209-236. http://dx.doi.org/10.1016/S0960-0779(03)00278-9
[6]
A. Elokaby, Chaos, Solitons & Fractals, Vol. 41, 2009, pp. 1616-1618. http://dx.doi.org/10.1016/j.chaos.2008.07.003
[7]
P. S. Addison, “Fractals and Chaos,” IOP, Bristol, 1997. http://dx.doi.org/10.1887/0750304006
[8]
F. Diacu and P. Holmes, “Celestial Encounters—The Origins of Chaos and Stability,” Princeton University Press, Princeton, 1996.
[9]
M. S. El Naschie, International Journal of Modern Nonlinear Theory and Application, Vol. 2, 2013, pp. 107-121. http://dx.doi.org/10.4236/ijmnta.2013.22014
[10]
M. S. El Naschie, Journal of Quantum Information Science, Vol. 3, 2013, pp. 57-77. http://dx.doi.org/10.4236/jqis.2013.32011
[11]
A. Connes, “Non-Commutative Geometry,” Academic Press, New York, 1994.
[12]
J. Bellissard, “Gap labeling theorems for Schrodinger operators,” In: M. Waldschmidt, P. Monsa, J. Luck and C. Itzykon, Eds., Chapter 12 in From Number Theory to Physics, Springer, Berlin, 1992.
[13]
G. Landi, “An Introduction to Non-Commutative Space and Their Geometries,” Springer, Berlin, 1997.
[14]
L. Marek-Crnjac, et al., International Journal of Modern Nonlinear Theory and Application, Vol. 2, 2013, pp. 78-88. http://dx.doi.org/10.4236/ijmnta.2013.21A010
[15]
M. S. El Naschie and J.-H. He, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 2, 2012, pp. 41-49.
[16]
M. S. El Naschie, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 2, 2012, pp. 135-142.
[17]
M. S. El Naschie, J.-H. He, S. Nada, L. Marek-Crnjac and M. Atef Helal, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 2, 2012, pp. 80-92.
[18]
J.-H. He and M. S. El Naschie, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 2, 2012, pp. 94-98.
[19]
M. S. El Naschie and J.-H. He, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 1, 2011, pp. 3-9.
[20]
M. S. El Naschie and S. Olsen, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 1, 2011, pp. 11-24.
[21]
M. S. El Naschie and O. E. Rossler, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 2, 2012, pp. 56-65.
[22]
J.-H. He, T. Zhong, L. Xu, L. Marek-Crnjac, S. Nada and M. Atef Helal, Nonlinear Science Letters B, Vol. 1, 2011, pp. 15-24.
[23]
M.S. El Naschie, Nonlinear Science Letters A, Vol. 2, 2011, pp. 1-9.
[24]
M. S. El Naschie, L. Marek-Crnjac, J.-H. He and M. Atef Helal, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 3, 2013, pp. 3-10.
[25]
T. Zhong and J.-H. He, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 3, 2013, pp. 46-49.
[26]
M. S. El Naschie, Journal of Modern Physics, Vol. 4, 2013, pp. 757-760. http://dx.doi.org/10.4236/jmp.2013.46103
[27]
M. S. El Naschie, Journal of Modern Physics, Vol. 4, 2013, pp. 591-596. http://dx.doi.org/10.4236/jmp.2013.45084
[28]
M. S. El Naschie, Gravitation and Cosmology, Vol. 19, 2013, pp. 151-155. http://dx.doi.org/10.1134/S0202289313030031
[29]
S. Krantz and H. Parks, “Geometric Integration Theory,” Birkhauser, Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4679-0
[30]
R. Penrose, “The Road to Reality,” Johnathan Cape, London, 2004.
[31]
L. Hardy, Physical Review Letters, Vol. 71, 1993, pp. 1665-1668. http://dx.doi.org/10.1103/PhysRevLett.71.1665
[32]
P. Kwiat and L. Hardy, American Journal of Physics, Vol. 68, 2000, p. 33. http://dx.doi.org/10.1119/1.19369
[33]
N. D. Mermin, American Journal of Physics, Vol. 62, 1994, p. 880. http://dx.doi.org/10.1119/1.17733
[34]
E. J. Copeland, M. Sami and S. Tsujikawa, “Dynamics of Dark Energy,” 2006. arXiv: hep-th/0603057V3
[35]
S. Perlmutter, et al., The Astrophysical Journal, Vol. 517, 1999, pp. 565-585. http://dx.doi.org/10.1086/307221
[36]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 10, 1999, pp. 1807-1811. http://dx.doi.org/10.1016/S0960-0779(99)00008-9
[37]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 14, 2002, pp. 1117-1120.
[38]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 9, 1998, pp. 1445-1471. http://dx.doi.org/10.1016/S0960-0779(98)00120-9
[39]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 38, 2008, pp. 1260-1268. http://dx.doi.org/10.1016/j.chaos.2008.07.010
[40]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 29, 2006, pp. 23-35. http://dx.doi.org/10.1016/j.chaos.2005.11.079
[41]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 41, 2009, pp. 1799-1803. http://dx.doi.org/10.1016/j.chaos.2008.07.025
[42]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 41, 2009, pp. 2787-2789. http://dx.doi.org/10.1016/j.chaos.2008.10.011
[43]
M. S. El Naschie, New Advances in Physics, Vol. 1, 2007, pp. 111-122.
[44]
J. Mageuijo and L. Smolin, “Lorentz Invariance with an Invariant Energy Scale,” Cornell University Library, Ithaca, 2001. arXiv: hep-th/0112090V2
[45]
T. Zhong, Chaos, Solitons & Fractals, Vol. 42, 2009, pp. 1780-1783. http://dx.doi.org/10.1016/j.chaos.2009.03.079
[46]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 14, 2002, pp. 1121-1126. http://dx.doi.org/10.1016/S0960-0779(02)00172-8
[47]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 28, 2006, pp. 1366-1371. http://dx.doi.org/10.1016/j.chaos.2005.11.001
[48]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 29, 2006, pp. 816-822. http://dx.doi.org/10.1016/j.chaos.2006.01.013
[49]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 16, No. 2, 2003, pp. 353-366. http://dx.doi.org/10.1016/S0960-0779(02)00440-X
[50]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 13, 2002, pp. 1167-1174. http://dx.doi.org/10.1016/S0960-0779(01)00210-7
[51]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 13, 2002, pp. 1935-1945. http://dx.doi.org/10.1016/S0960-0779(01)00242-9
[52]
A. Pais, “Subtle Is the Lord: The Science and Life of Albert Einstein,” Oxford University Press, Oxford, 1982.
[53]
J.-H. He and M. S. El Naschie, Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, Vol. 3, 2013, pp. 59-62.
[54]
A. Gefter, “The Infinity Illusion,” New Scientist, 17 August 2013, pp. 32-35.
[55]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 41, 2009, pp. 2635-2646. http://dx.doi.org/10.1016/j.chaos.2008.09.059
[56]
R. Elwes, “Ultimate logic,” New Scientist, 30 July 2011, pp. 30-33. http://dx.doi.org/10.1016/S0262-4079(11)61838-1
[57]
M. S. El Naschie, International Journal of Modern Nonlinear Theory and Application, Vol. 2, 2013, pp. 55-59.
[58]
M. S. El Naschie, International Journal of Theoretical Physics, Vol. 37, 1998, pp. 2935-2951. http://dx.doi.org/10.1023/A:1026679628582
[59]
M. S. El Naschie, International Journal of Modern Physics E, Vol. 13, 2004, pp. 835-849. http://dx.doi.org/10.1142/S0218301304002429
[60]
M. S. El Naschie, “From Hilbert Space to the Number of Higgs Particles via the Quantum Two-Slit Experiment,” In: P. Weibel, G. Ord and O. Rossler, Eds., Space-Time Physics and Fractality, Festshrift in Honour of Mohamed El Naschie, Springer Verlag, Wien and New York, 2005, pp. 223-231. http://dx.doi.org/10.1007/3-211-37848-0_14
[61]
M. S. El Naschie, Open Journal of Microphysics, Vol. 3, 2013, pp. 64-70. http://dx.doi.org/10.4236/ojm.2013.33012
[62]
E. Goldfain, Chaos, Solitons & Fractals, Vol. 20, 2004, pp. 427-435. http://dx.doi.org/10.1016/j.chaos.2003.10.012
[63]
G. N. Ord, Annals of Physics, Vol. 324, 2009, pp. 1211-1218.
[64]
M. S. El Naschie, Chaos, Solitons & Fractals, Vol. 25, 2005, pp. 521-524. http://dx.doi.org/10.1016/j.chaos.2005.01.022
[65]
A. Elokaby, Chaos, Solitons & Fractals, Vol. 42, 2009, pp. 303-305. http://dx.doi.org/10.1016/j.chaos.2008.12.001
[66]
G. Iovane and S. Nada, Chaos, Solitons & Fractals, Vol. 41, 2009, pp. 641-642. http://dx.doi.org/10.1016/j.chaos.2008.11.024
[67]
J.-H. He, E. Goldfain, L. D. Sigalotti and A. Mejias, “Beyond the 2006 Physics Nobel Prize for COBE,” China Culture & Scientific Publishing, 2006.
[68]
M. S. El Naschie, Journal of Modern Physics, Vol. 4, 2013, pp. 354-356. http://dx.doi.org/10.4236/jmp.2013.43049
[69]
D. R. Finkelstein, “Quantum Relativity,” Springer, Berlin, 1996. http://dx.doi.org/10.1007/978-3-642-60936-7
[70]
C. Rovelli, “Quantum Gravity,” Cambridge Press, Cambridge, 2004.
[71]
Y. Gnedin, A. Grib and V. Matepanenko, “Proceedings of the Third Alexander Friedmann International Seminar on Gravitation and Cosmology,” Friedmann Lab. Pub., St. Petersberg, 1995.
[72]
A. Vileukin and E. Shellard, “Cosmic Strings and Other Topological Defects,” Cambridge University Press, Cambridge, 2001.