We generalize this result to p1,p2-periodic eigenfunctions of F on R2 and to p1,p2,p3-periodic eigenfunctions of F on R3.
References
[1]
R. N. Bracewell, “Fourier Analysis and Imaging,” Kluwer Academic, New York, 2003. http://dx.doi.org/10.1007/978-1-4419-8963-5
[2]
L. Schwartz, “Theorie des Distributions,” Hermann, Paris, 1950.
[3]
R. Strichartz, “A Guide to Distribution Theory and Fourier Transforms,” CRC Press, Inc., Boca Raton, 1994.
[4]
B. Osgood, “The Fourier Transform and Its Applications,” Lecture Notes, Stanford University, 2005.
[5]
D. W. Kammler, “A First Course in Fourier Analysis,” Prentice Hall, New Jersey, 2000.
[6]
J. I. Richards and H. K. Youn, “Theory of Distributions: A Non-technical Introduction,” Cambridge University Press, Cambridge, 1990. http://dx.doi.org/10.1017/CBO9780511623837
[7]
M. J. Lighthill, “An Introduction to Fourier Analysis and Generalized Functions,” Cambridge University Press, New York, 1958. http://dx.doi.org/10.1017/CBO9781139171427
[8]
L. Auslander and R. Tolimieri, “Is Computing with the Finite Fourier Transform Pure or Applied Mathematics?” Bulletin of the American Mathematical Society, Vol. 1, 1979, pp. 847-897. http://dx.doi.org/10.1090/S0273-0979-1979-14686-X
[9]
J. H. McClellan and T. W. Parks, “Eigenvalue and Eigenvector Decomposition of the Discrete Fourier Transform,” IEEE Transactions on Audio and Electroacoustics, Vol. 20, No. 1, 1972, pp. 66-74. http://dx.doi.org/10.1109/TAU.1972.1162342
[10]
M. Senechal, “Quasicrystals and Geometry,” Cambridge University Press, New York, 1995.