全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spectral Analysis and Variable Structural Control of an Elastic Beam

DOI: 10.4236/jamp.2013.15015, PP. 98-104

Keywords: Spectral Analysis, Semigroups of Linear Operators, Elastic Beam System, Variable Structural Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

An elastic beam system formulated by partial differential equations with initial and boundary conditions is investigated in this paper. An evolution equation corresponding with the beam system is established in an appropriate Hilbert space. The spectral analysis and semigroup generation of the system operator of the beam system are discussed. Finally, a variable structural control is proposed and a significant result that the solution of the system is exponentially stable under a variable structural control with some appropriate conditions is obtained.

References

[1]  G. Chen, M. C. Delfour, A. M. Krall and G. Payre, “Modeling Stabilization and Control of Serially Connected Beam,” SIAM Journal on Control and Optimization, Vol. 25, No. 3, 1987, pp. 526-546.
http://dx.doi.org/10.1137/0325029
[2]  F. Conrad, “Stabilization of Beams by Pointwise Feedback Control,” SIAM Journal on Control and Optimization, Vol. 28, No. 2, 1990, pp. 423-437.
http://dx.doi.org/10.1137/0328023
[3]  Z. H. Luo, “Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results,” IEEE Transactions on Automatic Control, Vol. 38, No. 11, 1993, pp. 1610-1622.
http://dx.doi.org/10.1109/9.262031
[4]  B. Z. Guo, “Riesz Basis Approach to Stabilization of a Flexible Beam with a Tip Mass,” SIAM Journal on Control and Optimization, Vol. 39, No. 6, 2001, pp. 1736-1747. http://dx.doi.org/10.1137/S0363012999354880
[5]  R. F. Curtain and H. J. Zwart, “An Introduction to Infinite Dimensional Linear System Theory,” Springer-Verlag, New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4224-6
[6]  X. Z. Hou and S.-K. Tsui, “A Control Theory for Cartesian Flexible Robot Arms,” Journal of Mathematical Analysis and Applications, Vol. 225, No. 1, 1998, pp. 265-288. http://dx.doi.org/10.1006/jmaa.1998.6027
[7]  X. Z. Hou and S.-K. Tsui, “A Mathematical Model for Flexible Robot Arms System Modelling and Optimization,” Chapman & Hall, Boca Raton, 1999, pp. 391-398.
[8]  X. Z. Hou and S.-K. Tsui, “Control and Stability of a Torsional Elastic Robot Arm,” Journal of Mathematical Analysis and Applications, Vol. 243, No. 1, 2000, pp. 140-162. http://dx.doi.org/10.1006/jmaa.1999.6666
[9]  X. Z. Hou and S.-K. Tsui, “A Feedback Control and a Simulation of a Torsional Flexible Robot Arm,” Applied Mathematics and Computations, Vol. 142, No. 2-3, 2003, pp. 389-407.
http://dx.doi.org/10.1016/S0096-3003(02)00310-7
[10]  W. H. Yu, “The Optimal Control for an Elastic Robot System,” Control Theorey and Applications, Vol. 12, 1995, pp. 245-258.
[11]  X. Z. Hou, “Asymptotical Behavior of a Flexible Robot System with Point-Wise Control,” International Journal of Pure and Applied Mathematics, Vol. 15, No. 3, 2004, pp. 277-295.
[12]  A. V. Balaskrishman, “Applied Functinal Analysis,” Springer-Verlag, New York, 1981.
[13]  R. A. Adams, “Sobolev Space,” Academic Press, New York, 1975.
[14]  A. Pazy, “Semigroup of Linear Operators and Applications to Partial Differential Equations,” Springer-Verlag, Berlin, 1983.
[15]  G. C. Verghese, B. Fernadex and J. K. Hedrick, “Stable Robust Tracking by Sliding Mode Control,” Systems & Control Letters, Vol. 10, No. 1, 1988, pp. 27-34.
http://dx.doi.org/10.1016/0167-6911(88)90036-9
[16]  K. S. Yeung, C. Cheng and C. Kwan, “A Unifying Design of Sliding Mode and Classical Controllers,” IEEE Transactions on Automatic Control, Vol. 38, No. 9, pp. 1422-1427. http://dx.doi.org/10.1109/9.237660
[17]  D. S. Yoo and M. J. Chung, “A Variable Structure Control with Simple Adaptation for Upper Bound on the Norm of the Uncertainties,” IEEE Transactions on Automatic Control, Vol. 37, No. 6, 1992, pp. 860-864.
http://dx.doi.org/10.1109/9.256348
[18]  S. H. Zak and S. Hui, “On Variable Structure Output Feedback Controllers for Uncertain Dynamic Systems,” IEEE Transactions on Automatic Control, Vol. 38, 1993, pp. 1509-1512. http://dx.doi.org/10.1109/9.241564

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133