A new wave simulation technique for the elastic wave
equation in the frequency domain based on a no overlapping domain decomposition
algorithm is investigated. The boundary conditions and the finite difference discrimination
of the elastic wave equation are derived. The algorithm of no overlapping domain
decomposition method is given. The method solves the elastic wave equation by
iteratively solving sub problems defined on smaller sub domains. Numerical
computations both for homogeneous and inhomogeneous media show the
effectiveness of the proposed method. This method can be used in the
full-waveform inversion.
References
[1]
A. Bayliss, C. I. Goldstein and E. Turkel, “The Numerical Solution of the Helmholtz Equation for Wave Propagation Problmes in Underwater Acoustics,” Computers and Mathematics with Applications, Vol. 11, No. 7-8, 1985, pp. 655-665. doi:10.1016/0898-1221(85)90162-2
[2]
R. E. Plexxis, “A Helmholtz Iterative Solver for 3D Seismic-imaging Problems,” Geophysics, Vol. 72, No. 5 2007, pp. SM185-SM197. doi:10.1190/1.2738849
[3]
F. Ihlenburg and I. Babuska, “Finite Element Solution of the Helmholtz Equation with High Wave Number. Part I: The H-version of the FEM,” Computers and Mathematics with Applications, Vol. 30, No. 9, 1995, pp. 9-37. doi:10.1016/0898-1221(95)00144-N
[4]
F. Ihlenburg and I. Babuska, “Finite Element Solution of the Helmholtz Equation with High Wave Number. Part II: The Hp-version of the FEM,” SIAM Journal on Numerical Analysis, Vol. 34, No. 1, 1997, pp. 315-358. doi:10.1137/S0036142994272337
[5]
A. Bayliss, C. I. Goldstein and E. Turkel, “An Iterative Method for the Helmholtz Equation,” Journal of Computational Physics, Vol. 49, No. 3, 1983, pp. 443-457. doi:10.1016/0021-9991(83)90139-0
[6]
Y. A. Erlangga, “Advances in Iterative Methods and PreConditioners for the Helmholtz Equation,” Archives of Computational Methods in Engineering, Vol. 15, No. 1 2008, pp. 37-66. doi:10.1007/s11831-007-9013-7
[7]
T. F. Chan and T. P. Mathew, “Domain Decomposition Algorithms,” Acta Numerica, Vol. 3, 1994, pp. 61-143. doi:10.1017/S0962492900002427
[8]
A. Tosseli and O. Widlund, “Domain Decomposition Methods-Algorithms and Theory,” Springer, Berlin, 2005.
[9]
J. Xu, “Iterative Methods by Space Decomposition and Subspace Correction,” SIAM Review, Vol. 34, No. 4, 1992, pp. 581-613. doi:10.1137/1034116
[10]
J. Xu and J. Zou, “Some Nonoverlapping Domain Decomposition Methods,” SIAM Review, Vol. 40, No. 4, 1998, pp. 857-914. doi:10.1137/S0036144596306800
[11]
C. Cerjan, D. Kosloff, R. Kosloff and M. Reshef, “A Non-reflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations,” Geophysics, Vol. 50, No. 4, 1985, pp. 705-708. doi:10.1190/1.1441945
[12]
R. Clayton and B. Engquist, “Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations,” Bulletin of the Seismological Society of America, Vol. 67, No. 6, 1977, pp. 1529-1540.
[13]
J. P. Berenger, “A Perfectly Matched Layer for Absorbing of Electromagnetic Waves,” Journal of Computational Physics, Vol. 114, No. 2, 1994, pp. 185-200. doi:10.1006/jcph.1994.1159
[14]
S. Kim, “Domain Decomposition Iterative Procedures for Solving Scalar Waves in the Frequency Domain”, Numerische Mathematik, Vol. 79, No. 2, 1998, pp. 231-259. doi:10.1007/s002110050339
[15]
S. Larsson, “A Domain Decomposition Method for the Helmholtz Equation in a Multilayer Domain,” SIAM Journal on Scientific Computing, Vol. 20, No. 5, 1999, pp. 1713-1731. doi:10.1137/S1064827597325323
[16]
F. Magoulès, F. X. Roux and S. Salmon, “Optimal Discrete Transmission Conditions for a Nonoverlapping Domain Decomposition Method for the Helmholtz Equation,” SIAM Journal on Scientific Compting, Vol. 25, No. 5, 2004, pp. 1497-1515. doi:10.1137/S1064827502415351
[17]
Y. A. Erlangga, C. Vuik and C. W. Oosterlee, “On a Class of Preconditioners for Solving the Helmholtz Equation,” Applied Numerical Mathematics, Vol. 50, No. 3-4, 2003, pp. 409-425. doi:10.1016/j.apnum.2004.01.009
[18]
T. Airaksinen, E. Heikkola, A. Pennanen and J. Toivanen, “An Algebraic Multigrid based Shifted-Laplacian P[econditioner for the Helmholtz Equation,” Journal of Computational Physics, Vol. 226, No. 1, 2007, pp. 1196-1210.doi:10.1016/j.jcp.2007.05.013