In genetic association studies of complex diseases,
endo-phenotypes such as expression profiles, epigenetic data, or clinical
intermediate-phenotypes provide insight to understand the underlying
biological path of the disease. In such situations, in order to establish the
path from the gene to the disease, we have to decide whether the gene acts on
the disease phenotype primarily through a specific endo-phenotype or whether
the gene influences the disease through an unidentified path which is
characterized by different intermediate phenotypes. Here, we address the question
that a genetic locus, given its effect on an endo-phenotype, influences the
trait of interest primarily through the path of the endo-phenotype. We
propose a Bayesian approach that can evaluate the genetic association between
the genetic locus and the phenotype of interest in the presence of the genetic
effect on the endo-phenotype. Using simulation studies, we verify that our
approach has the desired properties and compare this approach with a mediation
approach. The proposed Bayesian approach is illustrated by an application to
genome-wide association study for childhood asthma (CAMP) that contains
expression profiles.
References
[1]
Naylor, M.G., Lin, X., Weiss, S.T., Raby, B.A and Lange, C. (2010) Using canonical correlation analysis to discover gentic regulatory variants. PloS One, 5, e10395.
[2]
Vansteelandt S. (2009) Estimating direct effects in cohort and case-control studies. Epidemiology, 20, 851-860.
doi:10.1097/EDE.0b013e3181b6f4c9
[3]
Vansteelandt, S., Geotgeluk, S., Lutz, S., Waldman, I., Lyon, H., Schadt, E.E., Weiss, S.T. and Lange, C. (2009) On the adjustment for covariates in genetic association analysis: A novel, simple principle to infer direct causal effects. Genetic Epidemiology, 33, 394-405.
doi:10.1002/gepi.20393
[4]
Lipman, P.J., Liu, K.Y., Muehlschlegel, J.D., Body, S. and Lange, C. (2010) Inferring genetic causal effects on survival data with associated endo-phenotypes. Genetic Epidemiology, 35, 119-124. doi:10.1002/gepi.20557s
[5]
Schadt E. E., Lamb J., Yang, X., Zhu, J. and Edwards, S. (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics, 37, 710-717. doi:10.1038/ng1589
[6]
Kulp, D.C. and Jagalur, M. (2006) Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics, 7, 125.
doi:10.1186/1471-2164-7-125
[7]
Aten, J.E., Fuller, T.F., Lusis, A.J. and Horvath, S. (2008) Using genetic markers to orient the edges in quantitative trait networks: The NEO software. BMC Systems Biology, 2, 34. doi:10.1186/1752-0509-2-34
[8]
Millstein J., Zhang, B., Zhu, J. and Schadt, E.E. (2009) Disentangling molecular relationships with a causal inference test. BMC Genetics, 10, 23.
doi:10.1186/1471-2156-10-23
[9]
Duarte, C. W. and Zeng, Z.B. (2011) High-confidence discovery of genetic network regulators in expression quantitative trait loci data. Genetics, 187, 955-964.
doi:10.1534/genetics.110.124685
[10]
Chen, L.S., Emmert-Streib, F. and Storey, J.D. (2007) Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biology, 8, R219. doi:10.1186/gb-2007-8-10-r219
[11]
Li, R., Tsaih, S.W., Shockley, K., Stylianou, I.M., Wergedal, J., Paigen, B. and Churchill, G.A. (2006) Structural model analysis of multiple quantitative traits. PLoS Genetics, 2, e114. doi:10.1371/journal.pgen.0020114
[12]
Imai, K., Keele, L., Tingley, D. and Yamamoto, T. (2010) Causal mediation analysis using R. In: Vinod, H.D., Ed., Advances in Social Science Research Using R, Springer, New York, 129-154.
[13]
Imai, K., Keele, L. and Tingley, D. (2010) A general approach to causal mediation analysis. Psychological Methods, 15, 309-334. doi:10.1037/a0020761
[14]
Imai, K., Keele, L. and Yamamoto, T. (2010) Identification, inference, and sensitivity analysis for causal mediation effects. Statistical Science, 25, 51-71.
doi:10.1214/10-STS321
[15]
Imai, K., Keele, L., Tingley, D. and Yamamoto, T. (2011) Unpacking the black box: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105, 765-789.
doi:10.1017/S0003055411000414
[16]
The Childhood Asthma Management Program Research Group (2000) Long-term effects of budesonide or nedocromil in children with asthma. The New England Journal of Medicine, 343, 1054-1063.
doi:10.1056/NEJM200010123431501
[17]
The Childhood Asthma Management Program Research Group (1999) The childhood asthma management program (CAMP): Design, rationale, and methods. Controlled Clinical Trials, 20, 91-120.
doi:10.1016/S0197-2456(98)00044-0
[18]
Carlin, B.P. and Louis, T.A. (2009) Bayesian methods for data analysis. Chapman and Hall/CRC Press, Boca Raton.
[19]
Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2003) Bayesian data analysis. Chapman and Hall/CRC Press, Boca Raton.
[20]
O’Hagan, A. and Foster, J. (2004) Kendall’s advanced theory of statistics: Bayesian inference. Edward Arnold Press, London.
[21]
Spiegelhalter, D.J., Abrams, K.R. and Myles, J.P. (2004) Bayesian approaches to clinical trials and health-care evaluation. John Wiley and Sons, Chichester.
[22]
Chipman, H., George, E.I. and McCulloch, R.E. (2001) The practical implementation of Bayesian model selection. IMS Lecture Notes—Monograph Series, 38, 65-134.
doi:10.1214/lnms/1215540964
[23]
Yuan, M. and Lin, Y. (2005) Efficient empirical Bayes variable selection and estimation in linear models. Journal of the American Statistical Association, 100, 1215-1225. doi:10.1198/016214505000000367
[24]
Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 3, 515-533.
[25]
Robert, C.P. and Casella, G. (2004) Monte Carlo statistical methods. Springer, New York.
doi:10.1007/978-1-4757-4145-2