Kaolin was
modified using a chemical complex of hydrazine hydrate and oleochemical sodium
salts derived from rubber seed oil (SRSO) and tea seed oil (STSO) respectively.
Characterization of the pristine kaolin and the modified kaolins were performed
using Scanning Electron Microscopy (SEM), Simultaneous
Thermogravimetric/Differential Thermal Analysis (TG/DTA) and UV
Spectrophotometry.TG/DTA revealed that
the incorporation of the oleochemical salts enhanced thermal decomposition of
kaolin into metakaolin. Ultraviolet spectrophotometric studies conducted on the
modified kaolin show for the first time that the SRSO-modified kaolin and
STSO-modified kaolin have a peak absorbance
wavelengths of 312.72 nm and 314.26 nm respectively. This shows that the
modified kaolin is a promising candidate for sunscreen applications.
References
[1]
P. A. Ciullo, “Industrial Minerals and Their Uses: A Handbook and Formulary,” Noyes Publications, Park Ridge, 1996.
[2]
G. N. Callahan, “Eating Dirt,” Emerging Infectious Diseases,” 2003.
[3]
R. E. Grim, “Clay Mineralogy,” McGraw-Hill, Inc., New York, 1968, p. 596
[4]
D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova and J. Simonik, “Polymer/Clay Nanocomposites Based on MMT/ODA Intercalates,” Composite Interfaces, Vol. 9, No. 6, 2002, pp. 529-540.
doi:10.1163/15685540260494100
[5]
M. J. Wilson, “A Handbook of Determinative Methods in Clay Mineralogy,” Blackie & Son Ltd., London, 1987.
[6]
Y. Komori, Y. Sugahara and K. Kuroda, “Direct Intercalation of Poly(vinylpyrrolidone) into Kaolinite by a Refined Guest Displacement Method,” Chemistry of Materials, Vol. 11, No. 1, 1999, pp. 3-6.
doi:10.1021/cm9804721
[7]
W. N. Martens, R. L. Frost, J. Kristof and E. Horvath, “Modification of Kaolinite Surfaces through Intercalation with Deuterated Dimethylsulfoxide,” Journal of Physical Chemistry B, Vol. 106, No. 16, 2002, pp. 4162-4171.
doi:10.1021/jp0130113
[8]
E. Horvath, J. Kristof, R. L. Frost, E. Jakab, E. Mako ,V. Vagvolgyi, “Identification of Superactive Centers in Thermally Treated Formamide-Intercalated Kaolinite,” Journal of Colloid and Interface Science, Vol. 289, No. 1, 2005, pp. 132-138. doi:10.1016/j.jcis.2005.03.059
[9]
R. L. Frost, J. Kristof, E. Horvath and J. T. Kloprogge, “Modification of Kaolinite Surfaces through Intercalation with Potassium Acetate, II,” Journal of Colloid and Interface Science, Vol. 214, No. 1, 1999, pp. 109-117.
doi:10.1006/jcis.1999.6177
[10]
J. C. Dai and J. T. Huang, “Surface Modification of Clays and Clay-Rubber Composite,” Applied Clay Science, Vol. 15, No. 1-2, 1999, pp. 51-65.
doi:10.1016/S0169-1317(99)00020-4
[11]
M. Lipsicas, R. Raythatha, R. F. Giese and P. M. Costanzo, “Molecular Motions, Surface Interactions, and Stacking Disorder in Kaolinite Intercalates,” Clays and Clay Minerals, Vol. 34, No. 6, 1986, pp. 635-644.
doi:10.1346/CCMN.1986.0340603
[12]
M. Raupach, P. F. Barron and J. G. Thompson, “Nuclear Magnetic Resonance, Infrared, and X-Ray Powder Diffraction Study of Dimethylsulfoxide and Dimethylselenoxide Intercalates with Kaolinite,” Clays and Clay Minerals, Vol. 35, No. 3, 1987, pp. 208-219.
doi:10.1346/CCMN.1987.0350307
[13]
S. Rugmini and A. R. R. Menon, “Organomodified Kaolin as Filler for Natural Rubber,” Journal of Applied Polymer Science, Vol. 107, No. 6, 2008, pp. 3476-3483.
doi:10.1002/app.27469
[14]
L. E. Yahaya, K. O. Adebowale and A. R. R. Menon, “Mechanical Properties of Organomodified Kaolin/Natural Rubber Vulcanizates,” Applied Clay Science, 46, No. 3, 2009, pp. 283-288. doi:10.1016/j.clay.2009.08.018
[15]
L. E. Yahaya, K. O. Adebowale, B. I. Olu-Owolabi, A. R. R. Menon, R. Sukumar and J. Chameswary, “Natural Rubber/Organoclay Nanocomposite from Tea (Camellia sinesis) Seed Oil Derivative,” American Journal of Materials Science, Vol. 2, No. 2, 2012, pp. 1-5.
[16]
L. E. Yahaya, K. O. Adebowale, B. I. Olu-Owolabi and A. R. R. Menon, “Compositional Analysis of Tea (Camellia sinensis) Seed Oil and its Applications,” International Journal of Research in Chemistry and Environment, Vol. 1, No. 2, 2011, pp. 153-158.
[17]
M. Bellotto, A. Gualtieri and G. Artioli, “Kinetic Study of the Kaolinite Mullite Reaction Sequence. Part I: Kaolinite Dehydroxylation,” Physics and Chemistry of Minerals, Vol. 22, No. 4, 1995, pp. 207-214.
doi:10.1007/BF00202253
[18]
A. Gualtieri, M. Bellotto and G. Artioli, “Kinetic Study of the Kaolinite Mullite Reaction Sequence. Part 2: Mullite Formation,” Physics and Chemistry of Minerals, Vol. 22, No. 4, 1995, pp. 215-222. doi:10.1007/BF00202254
[19]
E. Badogiannis, G. Kakali and S. Tsivilis, “Metakaolin as Supplementary Cementitious Material—Optimization of Kaolin to Metakaolin Conversion,” Journal of Thermal Analysis and Calorimetry, Vol. 81, No. 2, 2005, pp. 457-462. doi:10.1007/s10973-005-0806-3
[20]
A. Shvarzman, K. Kovler and G. Grader, “The Effect of Dehydroxylation/Amorphization Degree on Pozzolanic Activity of Kaolinite,” Cement and Concrete Research, Vol. 33, No. 3, 2003, pp. 405-416.
doi:10.1016/S0008-8846(02)00975-4
[21]
H. Rahier, B. Van Mele and M. Biesemans, “Low-Temperature Synthesized Aluminosilicate Glasses. 2. Rheological Transformations during Low-Temperature Cure and High-Temperature Properties of a Model Compound,” Journal of Materials Science, Vol. 31, No. 1, 1996, pp. 80-85. doi:10.1007/BF00355129
[22]
D. W. Breck, “Zeolite Molecular Sieves,” Wiley-Interscience, New York, 1974, pp. 314-315.
[23]
“ISO 21348 Process for Determining Solar Irradiances”.
http://www.spacewx.com/pdf/SET_21348_2004.pdf
[24]
B. R. Ilic, A. A. Mitrovic and L. R. Milicic, “Thermal Treatment of Kaolin Clay to Obtain Metakaolin,” Hemijska Industrija, Vol. 64, No. 4, 2010, pp. 351-356.