We present a resistor loaded EBG surface
(REBG) for antenna design. Specifically, lumped resistors are embedded between periodic metal patches of
mushroom like EBG structures. Surface wave propagation along the REBG surface
is analyzed as a periodically loaded transmission line model and low
transmission bandgap is identified and experimentally verified. The reflection properties of REBG surface to the incident
electromagnetic waves are also studied. Slot antenna is placed within the REBG surface.
The REBG surface is used to suppress surface waves across the antenna aperture,
resulting in radiation performance improvement. Concurrently, the REBG surface
can also absorb electromagnetic energy to reduce antenna radar cross section (RCS).
References
[1]
D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexó-polous and E. Yablonovitch, “High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 1999, pp. 2059-2074.
doi:10.1109/22.798001
[2]
R. F. J. Broas, D. F. Sievenpiper and E. Yablonovitch, “A High-Impedance Ground Plane Applied to a Cellphone Handset Geometry,” IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 7, 2001, pp. 1261-1265.
[3]
P. Maagt, R. Gonzalo, Y. C. Vardaxoglou and J. M. Baracco, “Electromagnetic Bandgap Antennas and Components for Microwave and (Sub)Millimeter Wave Applications,” IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2003, pp. 2667-2677.
doi:10.1109/TAP.2003.817566
[4]
F. Yang and Y. Rahmat-Samii, “Micro-Strip Antennas Integrated with Electromagnetic Band-Gap Structures: A Low Mutual Coupling Design for Array Applications,” IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2003, pp. 2936-2946.
doi:10.1109/TAP.2003.817983
[5]
I. Zeev, S. Reuven and B. Reuven, “Micro-Strip Antenna Phased Array with Electromagnetic Band-Gap Substrate,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 2004, pp. 1446-1453.
doi:10.1109/TAP.2004.830252
[6]
Y. Q. Fu and N. C. Yuan, “Elimination of Scan Blindness of Microstriop Phased Array Using Electromagnetic Bandgap Structures,” IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 2004, pp. 63-65.
doi:10.1109/LAWP.2004.827891
[7]
S. Collardey, A.-C. Tarot, P. Pouliguen and K. Mah djoubi1, “Use of Electromagnetic Band-Gap Materials for RCS Reduction,” Microwave and Optical Technology Letters, Vol. 44, No. 6, 2005, pp. 546-550.
doi:10.1002/mop.20693
[8]
D. J. Kern and D. H. Werner, “A Genetic Algorithm Approach to the Design of Ultra-Thin Electromagnetic Bandgap Absorbers,” Microwave and Optical Technology Letters, Vol. 38, No. 1, 2003, pp. 61-64.
doi:10.1002/mop.10971
[9]
Q. Gao, Y. Yin, D. B. Yan and N. C. Yuan, “Application of Metamaterials to Ultra-Thin Radar Absorbing Material Design,” Electronics Letters, Vol. 41, No. 17, 2005, pp. 936-937. doi:10.1049/el:20051239
[10]
V. F. Fusco and S. W. Simms, “Textured Surface Slot Antenna with Reduced Radar Cross-Section,” Electronics Letters, Vol. 43, No. 8, 2007, pp. 438-440.
doi:10.1049/el:20070111
[11]
Y. Li, H. Zhang, Y. Fu and N. Yuan, “RCS Reduction of Ridged Waveguide Slot Antenna Array Using EBG Radar Absorbing Material,” IEEE Antennas and Wireless Propagation Letters, Vol. 7, 2008, pp. 43-45.
[12]
M. Rahman and M. A. Stuchly, “Transmission Line-Periodic Representation of Planar Microwave Photonic Band gap Structures,” IEEE Antennas and Wireless Propagation Letters, Vol. 30, No. 1, 2001, pp. 15-19.
doi:10.1002/mop.1207