The S matrix of e-e scattering has the structure of a projection operator that projects incoming separable product states onto entangled two-electron states. In this projection operator the empirical value of the fine-structure constantαacts as a normalization factor. When the structure of the two-particle state space is known, a theoretical value of the normalization factor can be calculated. For an irreducible two-particle representation of the Poincaré group, the calculated normalization factor matches Wyler’s semi-empirical formula for the fine-structure constantα. The empirical value ofα, therefore, provides experimental evidence that the state space of two interacting electrons belongs to an irreducible two-particle representation of the Poincaré group.
References
[1]
W. Smilga, Journal of Physics: Conference Series, Vol. 343, 2012, Article ID: 012112.
doi:10.1088/1742-6596/343/1/012112
[2]
R. Haag, Matematisk-Fysiske Meddelelser Udgivet af. Det Kongelige Danske Videnskabernes, Vol. 29, 1955, pp. 1-37.
[3]
N. D. Mermim, Physics Today, Vol. 57, 2004, pp. 10-12.
doi:10.1063/1.1768652
[4]
E. Eilam, “Reversing: Secrets of Reverse Engineering,” John Wiley & Sons, Hoboken, 2005.
R. P. Feynman, Physical Review, Vol. 76, 1949, pp. 749-759. doi:10.1103/PhysRev.76.749
[7]
R. P. Feynman, Physical Review, Vol. 76, 1949, pp. 769-789. doi:10.1103/PhysRev.76.769
[8]
R. P. Feynman, Physical Review, Vol. 80, 1950, pp. 440-457. doi:10.1103/PhysRev.80.440
[9]
W. Heisenberg, Zeitschrift für Physik, Vol. 120, 1943, pp. 513-538.
[10]
G. Scharf, “Finite Quantum Electrodynamics,” Springer, Berlin, Heidelberg, New York, 1989.
doi:10.1007/978-3-662-01187-4
[11]
A. Wyler, Comptes rendus de l’Académie des Sciences, Vol. 271A, 1971, pp. 186-188.
[12]
R. Gilmore, “From a Visit to Armand Wyler in Zürich.”
http://www.tony5m17h.net/WylerHua.html
[13]
B. Robertson, Physical Review Letters, Vol. 27, 1971, pp. 1545-1547. doi:10.1103/PhysRevLett.27.1545
[14]
D. J. Gross, Physics Today, Vol. 42, 1989, pp. 9-11.
doi:10.1063/1.2811237
[15]
E. B. Vinberg, “Homogeneous Bounded Domain,” Encyclopedia of Mathematics, Springer.
http://www.encyclopediaofmath.org/index.php?title=Homogeneous_bounded_domain
[16]
L. K. Hua, “Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains,” Translations of Mathematical Monographs, Vol. 6, American Mathematical Society, Providence, 1963.
[17]
Link to animation of Mobius transformation:
http://www.ima.umn.edu/videos/mobius.php
[18]
I. S. Sharadze, “Sphere,” Encyclopedia of Mathematics, Springer.
http://www.encyclopediaofmath.org/index.php?title=Sphere
[19]
D. Hanneke, S. Fogwell and G. Gabrielse, Physical Review Letters, Vol. 100, 2008, Article ID: 120801.
doi:10.1103/PhysRevLett.100.120801
[20]
H. Joos, Fortschritte der Physik, Vol. 10, 1962, pp. 65-146. doi:10.1002/prop.2180100302
[21]
S. S. Schweber, “An Introduction to Relativistic Quantum Field Theory,” Harper & Row, New York, 1962, pp. 36-53.
[22]
S. S. Schweber, “An Introduction to Relativistic Quantum Field Theory,” Harper & Row, New York, 1962, pp. 272-280.
[23]
R. L. Jaffe, Physical Review, Vol. D72, 2005, Article ID: 021301.
[24]
R. Gilmore, Physical Review Letters, Vol. 28, 1972, pp. 462-464. doi:10.1103/PhysRevLett.28.462
[25]
W. Smilga, “Lokale Eigenschaften von Vielteilchensystemen in einer de Sitter-Invarianten Quantenmechanik,” Dissertation, Eberhard-Karl-Universitat, Tübingen, 1972.