Image denoising processes often lead to significant loss of fine structures such as edges and textures. This paper studies various innovative mathematical and numerical methods applicable for conventional PDE-based denoising models. The method of diffusion modulation is considered to effectively minimize regions of undesired excessive dissipation. Then we introduce a novel numerical technique for residual-driven constraint parameterization, in order for the resulting algorithm to produce clear images whose corresponding residual is as free of image textures as possible. A linearized Crank-Nicolson alternating direction implicit time-stepping procedure is adopted to simulate the resulting model efficiently. Various examples are presented to show efficiency and reliability of the suggested methods in image denoising. 1. Introduction During the last two decades, as the field of image processing requires higher reliability and efficiency, mathematical techniques have become important components of image processing. Various mathematical frameworks employing powerful tools of partial differential equations (PDEs) and functional analysis have emerged and successfully applied to various image processing tasks, particularly for image denoising and restoration [1–9], see also [10, 11]. Those PDE-based denoising techniques have allowed researchers and practitioners not only to introduce effective new models but also to improve traditional algorithms. However, most PDE-based models tend to either converge to a piecewise constant image or introduce image blur (undesired dissipation), partially because the models are derived by minimizing a functional of the image gradient. As a consequence, the conventional PDE-based models may lose interesting image fine structures during the denoising. In order to reduce the artifact, researchers have studied various mathematical and numerical techniques which either incorporate more effective constraint terms and iterative refinement [5, 12–14] or minimize a functional of second derivatives of the image [15–18]. These new mathematical models may preserve fine structures better than conventional ones; however, more advanced models and appropriate numerical procedures are yet to be developed. Most image denoising models incorporate parameters which are closely related to the noise level. Since it is often the case that the noise level is unknown, the problem of choosing parameters occasionally becomes a difficult task and, as a result, the resulting algorithm may produce unsatisfactory images. This paper suggests the method of
References
[1]
L. Alvarez, P.-L. Lions, and J.-M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion. II,” SIAM Journal on Numerical Analysis, vol. 29, no. 3, pp. 845–866, 1992.
[2]
F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM Journal on Numerical Analysis, vol. 29, no. 1, pp. 182–193, 1992.
[3]
T. F. Chan, S. Osher, and J. Shen, “The digital TV filter and nonlinear denoising,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 231–241, 2001.
[4]
S. Kim, “PDE-based image restoration: a hybrid model and color image denoising,” IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1163–1170, 2006.
[5]
A. Marquina and S. Osher, “Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal,” SIAM Journal on Scientific Computing, vol. 22, no. 2, pp. 387–405, 2000.
[6]
M. Nitzberg and T. Shiota, “Nonlinear image filtering with edge and corner enhancement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 8, pp. 826–833, 1992.
[7]
P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.
[8]
L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, vol. 60, no. 1–4, pp. 259–268, 1992.
[9]
Y. L. You, W. Xu, A. Tannenbaum, and M. Kaveh, “Behavioral analysis of anisotropic diffusion in image processing,” IEEE Transactions on Image Processing, vol. 5, no. 11, pp. 1539–1553, 1996.
[10]
S. Angenent, E. Pichon, and A. Tannenbaum, “Mathematical methods in medical image processing,” Bulletin of the American Mathematical Society, vol. 43, no. 3, pp. 365–396, 2006.
[11]
T. F. Chan and J. Shen, Image Processing and Analysis, SIAM, Philadelphia, Pa, USA, 2005.
[12]
S. Kim and H. Lim, “A non-convex diffusion model for simultaneous image denoising and edge enhancement,” Electronic Journal of Differential Equations, vol. 15, pp. 175–192, 2007.
[13]
Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, vol. 22 of University Lecture Series, American Mathematical Society, Providence, RI, USA, 2001.
[14]
S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “Using geometry and iterated refinement for inverse problems (1): total variation based image restoration,” CAM Report #04-13, Department of Mathematics, UCLA, Los Angeles, Calif, USA, 2004.
[15]
S. Kim, “Image denoising by fourth-order pdes,” in Proceedings of the 8th IASTED International Conference on Signal and Image Processing (SIP '06), pp. 249–254, August 2006.
[16]
M. Lysaker, A. Lundervold, and X. C. Tai, “Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time,” IEEE Transactions on Image Processing, vol. 12, no. 12, pp. 1579–1589, 2003.
[17]
S. Osher, A. Solé, and L. Vese, “Image decomposition and restoration using total variation minimization and the norm,” Multiscale Modeling & Simulation, vol. 1, no. 3, pp. 349–370, 2003.
[18]
Y.-L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1723–1730, 2000.
[19]
S. Kim, “Image denoising via diffusion modulation,” International Journal of Pure and Applied Mathematics, vol. 30, no. 1, pp. 71–92, 2006.
[20]
R. Weinstock, Calculus of Variations, Dover Publications, New York, NY, USA, 1974.
[21]
S. Osher and R. Fedkiw, Level Set methods and Dynamic Implicit Surfaces, vol. 153, Springer, New York, NY, USA, 2003.
[22]
J. Douglas, Jr. and J. E. Gunn, “A general formulation of alternating direction methods. I. Parabolic and hyperbolic problems,” Numerische Mathematik, vol. 6, pp. 428–453, 1964.
[23]
J. Douglas, Jr. and S. Kim, “Improved accuracy for locally one-dimensional methods for parabolic equations,” Mathematical Models & Methods in Applied Sciences, vol. 11, no. 9, pp. 1563–1579, 2001.
[24]
Y. Cha and S. Kim, “Edge-forming methods for color image zooming,” IEEE Transactions on Image Processing, vol. 15, no. 8, pp. 2315–2323, 2006.
[25]
Y. Cha and S. Kim, “Edge-forming methods for image zooming,” Journal of Mathematical Imaging and Vision, vol. 25, no. 3, pp. 353–364, 2006.
[26]
H. Kim, Y. Cha, and S. Kim, “Curvature interpolation method for image zooming,” IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 1895–1903, 2011.