The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO 2 and Rh/TiO 2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. Improvements of catalytic properties were obtained also with the nano-SiO 2 and nano-TiO 2 supports in comparison with the bulk supports. All of the catalysts were characterized by scanning electron microscope (SEM), inductively coupled plasma mass spectrometry (ICP-MS), BET, powder X-ray diffraction ( PXRD ) and NH 3- temperature-programmed desorption (TPD).
Srivastava, V.K.; Sharma, S.K.; Shukla, R.S.; Subrahmanyam, N.; Jasra, R.V. Kinetic Studies on the Hydroformylation of 1-Hexene Using RhCl(AsPh3)3 as a Catalyst. Ind. Eng. Chem. Res. 2005, 44, 1764–1771, doi:10.1021/ie049746m.
[4]
Zhang, Y.; Nagasaka, K.; Qui, X.; Tsubaki, N. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts. Appl. Catal. A 2004, 276, 103–111, doi:10.1016/j.apcata.2004.07.045.
[5]
Qiu, X.; Tsubaki, N.; Sun, S.; Fujimoto, K. Influence of noble metals on the performance of Co/SiO2 catalyst for 1-hexene hydroformylation. Fuel 2002, 81, 1625–1630, doi:10.1016/S0016-2361(02)00088-1.
[6]
Tadd, A.R.; Marteel, A.; Mason, M.R.; Davies, J.A.; Abraham, M.A. Hydroformylation of 1-Hexene in Supercritical Carbon Dioxide Using a Heterogeneous Rhodium Catalyst. 2. Evaluation of Reaction Kinetics. Ind. Eng. Chem. Res. 2002, 41, 4514–4522, doi:10.1021/ie010791t.
[7]
Han, D.; Li, X.; Zhang, H.; Liu, Z.; Li, J.; Li, C. Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts. J. Catal. 2006, 243, 318–325.
[8]
Balacos, M.W.; Chuang, S.S.C. Transient Response of Propionaldehyde Formation During CO/H2/C2H4 Reaction on Rh/SiO2. J. Catal. 1995, 151, 253–265.
[9]
Bando, K.K.; Asakura, K.; Arakawa, H.; Isobe, K.; Iwasawa, Y. Surface Structures and Catalytic Hydroformylation Activities of Rh Dimers Attached on Various Inorganic Oxide Supports. J. Phys. Chem. 1996, 100, 13636–13645, doi:10.1021/jp953124k.
[10]
Nandi, M.; Mondal, P.; Islam, M.; Bhaumik, A. Highly Efficient Hydroformylation of 1-Hexene over an ortho-Metallated Rhodium(I) Complex Anchored on a 2D-Hexagonal Mesoporous Material. Eur. J. Inorg. Chem. 2011, 2, 221–227.
[11]
Ichikawa, M. Catalytic hydroformylation of olefins over the rhodium, bimetallic RhCo, and cobalt carbonyl clusters supported with some metal oxides. J. Catal 1979, 59, 67–78, doi:10.1016/S0021-9517(79)80046-9.
[12]
Kainulainen, T.A.; Niemel?, M.K.; Krause, A.O.I. Hydroformylation of 1-hexene on Rh/C and Co/SiO2, catalysts. J.Mol. Cat. A 1997, 122, 39–49, doi:10.1016/S1381-1169(96)00461-X.
[13]
Li, B.; Li, X.; Asami, K.; Fujimoto, K. Low-Pressure Hydroformylation of Middle Olefins over Co and Rh Supported on Active Carbon Catalysts. Energy Fuels 2003, 17, 810–816, doi:10.1021/ef0202440.
[14]
Mukhopadhyay, K.; Chaudhari, R.V. Heterogenized HRh(CO)(PPh3)3 on zeolite Y using phosphotungstic acid as tethering agent: a novel hydroformylation catalyst. J. Catal. 2003, 213, 73–77, doi:10.1016/S0021-9517(02)00020-9.
[15]
Takahashi, N.; Miura, K.; Fukui, H. Reaction of rhodium species with carbon monoxide on freshly prepared Rh-Y zeolite and rhodium trichloride/silica catalysts revealed by the carbon-13 NMR technique. J. Phys. Chem. 1986, 90, 2797–2800, doi:10.1021/j100404a001.
[16]
Shibahara, F.; Nozaki, K.; Matsuo, T.; Hiyama, T. Asymmetric Hydroformylation with Highly Crosslinked Polystyrene-Supported (R,S)-BINAPHOS-Rh(I) Complexes: The Effect of Immobilization Positions. Bioorg. Med. Chem. Lett. 2002, 12, 1825–1827, doi:10.1016/S0960-894X(02)00267-6.
[17]
Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. Asymmetric Hydroformylation of Olefins in a Highly Cross-Linked Polymer Matrix. J. Am. Chem. Soc. 1998, 120, 4051–4052, doi:10.1021/ja973408d.
[18]
Ozin, G.A.; Arsenault, A.C. Nanochemistry a Chemical Approach to Nanomaterials; RSC Publishing: London, China, 2005; p. 5.
[19]
Rao, C.N.R.; Müller, A.; Cheetham, A.K. The Chemistry of Nanomaterials Synthesis, Properties and Applications; Rao, C.N.R., Müller, A., Cheetham, A.K., Eds.; VCH: Weinheim, Germany, 2004; Volume 1, pp. 1–2.
[20]
Park, K.H.; Ku, I.; Kim, H.J.; Son, S.U. NHC-Based Submicroplatforms for Anchoring Transition Metals. Chem. Mater. 2008, 20, 1673–1675, doi:10.1021/cm702776r.
[21]
Tuchbreiter, L.; Mecking, S. Hydroformylation with Dendritic-Polymer-Stabilized Rhodium Colloids as Catalyst Precursors. Macromol. Chem. Phys. 2007, 208, 1688–1693, doi:10.1002/macp.200700198.
[22]
Han, M.; Liu, H. Reaction conducted under rather severe conditions for a colloidal catalyst - hydroformylation of propylene catalyzed by polymer-protected rhodium colloids. Macromol. Symp. 1996, 105, 179–183, doi:10.1002/masy.19961050125.
[23]
Bruss, A.J.; Gelesky, M.A.; Machado, G.; Dupont, J. Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins. J. Mol. Catal. A 2006, 252, 212–218, doi:10.1016/j.molcata.2006.02.063.
[24]
Cai, Z.; Wang, H.; Xiao, C.; Zhong, M.; Ma, D.; Kou, Y. Hydroformylation of 1-hexene over ultrafine cobalt nanoparticle catalysts. J. Mol. Catal. A 2010, 330, 94–98, doi:10.1016/j.molcata.2010.07.006.
[25]
Han, D.; Li, X.; Zhang, H.; Liu, Z.; Hu, G.; Li, C. Asymmetric hydroformylation of olefins catalyzed by rhodium nanoparticles chirally stabilized with (R)-BINAP ligand. J. Mol. Catal. A 2008, 283, 15–22, doi:10.1016/j.molcata.2007.12.008.
[26]
Kim, J.Y.; Park, J.H.; Jung, O.-S.; Chung, Y.K.; Park, K.H. Heterogenized Catalysts Containing Cobalt-Rhodium Heterobimetallic Nanoparticles for Olefin Hydroformulation. Catal. Lett. 2009, 128, 483–486, doi:10.1007/s10562-008-9776-y.
[27]
Oresmaa, L.; Moreno, M.A.; Jakonen, M.; Suvanto, S.; Haukka, M. Catalytic activity of linear chain ruthenium carbonyl polymer [Ru(CO)4]n in 1-hexene hydroformylation. Appl. Catal. A 2009, 353, 113–116, doi:10.1016/j.apcata.2008.10.028.
[28]
Giordano, R.; Serp, P.; Kalck, P.; Kihn, Y.; Schreiber, J.; Marhic, C.; Duvail, J.-L. Preparation of Rhodium Catalysts Supported on Carbon Nanotubes by a Surface Mediated Organometallic Reaction. Eur. J. Inorg. Chem. 2003, 4, 610–617.
[29]
Zhang, Y.; Zhang, H.-B.; Lin, G.-D.; Chen, P.; Yuan, Y.-Z.; Tsai, K.R. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst. Appl. Catal. A 1999, 187, 213–224, doi:10.1016/S0926-860X(99)00229-X.
[30]
Qiu, J.; Zhang, H.; Liang, C.; Li, J.; Zhao, Z. Co/CNF Catalysts Tailored by Controlling the Deposition of Metal Colloids onto CNFs: Preparation and Catalytic Properties. Chem. Eur. J. 2006, 12, 2147–2151, doi:10.1002/chem.200500960.
[31]
Serp, P.; Cossias, M.; Kalck, P. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 2003, 253, 337–358, doi:10.1016/S0926-860X(03)00549-0.
Wryszcz, J.; Zawadzki, M.; Treciak, A.M.; Tylus, W.; Ziolkokowski, J.J. Catalytic activity of rhodium complexes supported on Al.2O3-ZrO2 in isomerization and hydroformylation of 1-hexene. Catal. Lett. 2004, 93, 85–92.
[34]
Zhou, W.; He, D. Anchoring RhCl(CO)(PPh3)(2) to -PrPPh2 Modified MCM-41 as Effective Catalyst for 1-Octene Hydroformulation. Catal. Lett. 2009, 127, 437–443, doi:10.1007/s10562-008-9734-8.
[35]
Li, P.; Thitsartan, W.; Kawi, S. Highly Active and Selective Nanoalumina-Supported Wilkinson’s Catalysts for Hydroformylation of Styrene. Ing. Eng. Chem. Res. 2009, 48, 1824–1830, doi:10.1021/ie800715k.
[36]
Zimowska, M.; Wagner, J.B.; Dziedzic, J.; Camra, J.; Borz?cka-Prokop, B.; Najbar, M. Some aspects of metal-support strong interactions in Rh/Al2O3 catalyst under oxidising and reducing conditions. Chem. Phys. Lett. 2006, 417, 137–142, doi:10.1016/j.cplett.2005.09.112.
[37]
Vishwanathan, V.; Narayanan, S. Evidence for strong metal-support interaction (SMSI) in Rh/TiO2 system. Catal. Lett. 1993, 21, 183–189, doi:10.1007/BF00767384.
[38]
Lónyi, F.; Valyon, J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-Mordenite. Micropor. Mesopor. Mater. 2001, 47, 293–301, doi:10.1016/S1387-1811(01)00389-4.
[39]
Zecchina, A.; Lamberti, C.; Bordiga, S. Surface acidity and basicity: General concepts. Catal. Today 1998, 41, 169–177, doi:10.1016/S0920-5861(98)00047-9.
[40]
Busca, G. Spectroscopic characterization of the acid properties of metal oxide catalysts. Catal. Today 1998, 41, 191–206, doi:10.1016/S0920-5861(98)00049-2.
[41]
Morrow, B.A.; Cody, I.A. Infrared studies of reactions on oxide surfaces. 5. Lewis acid sites on dehydroxylated silica and Infrared studies of reactions on oxide surfaces. 6. Active sites on dehydroxylated silica for the chemisorption of ammonia and water. J. Phys. Chem. 1976, 80, 1995–2004, doi:10.1021/j100559a009.
[42]
Wang, X.; Sonstr?m, P.; Arndt, D.; St?ver, J.; Zielasek, V.; Borchert, H.; Thiel, K.; Al-Shamery, K.; B?umer, M. Heterogeneous catalysis with supported platinum colloids: A systematic study of the interplay between support and functional ligands. J. Catal. 2011, 278, 143–152.
[43]
Ordomsky, V.V.; Sushkevich, V.L.; Ivanova, I.I. Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica. J. Mol. Catal. A 2010, 333, 85–93, doi:10.1016/j.molcata.2010.10.001.
[44]
Busca, G. The Use of Infrared Spectroscopic Methods in the Field of Heterogeneous Catalysis by Metal Oxides. In Metal Oxide Catalysis; Jackson, S.D., Justin, S.J., Eds.; 2009; Volume 1, pp. 95–175.
[45]
Origin 7 SR2 Software, version 7.0383, OriginLab, Northampton, MA, USA, 2002.
[46]
GRAMS/32, version 4.0, Galactic Industries Corporation, Salem, NH, USA.
[47]
Zumdahl, S.S. Chemical Principles, 3rd ed.; Houghton Mifflin Company: Boston, MA, USA, 1998; p. 572.
[48]
Newkirk, A.E.; McKee, D.W. Thermal decomposition of rhodium, iridium, and ruthenium chlorides. J. Catal. 1968, 11, 370–377, doi:10.1016/0021-9517(68)90061-4.
[49]
Rosales, M.; Durán, J.A.; Gonález, á.; Pacheco, I.; Sánchez-Delgado, R.A. Kinetics and mechanisms of homogeneous catalytic reactions. Part 7. Hydroformylation of 1-hexene catalyzed by cationic complexes of rhodium and iridium containing PPh3. J. Mol. Catal. 2007, 270, 250–256.
[50]
Parfitt, G.D. Surface chemistry of oxides. Pure Appl. Chem. 1976, 48, 415–418, doi:10.1351/pac197648040415.
Noei, H.; Qui, H.; Wang, Y.; L?ffler, E.; W?ll, C.; Muhler, M. The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys. Chem. Chem. Phys. 2008, 10, 7092–7097, doi:10.1039/b811029h.
[53]
Gun’ko, V.M.; Leboda, R.; Skubiszewska-Zi?ba, J. Heating effects on morphological and textural characteristics of individual and composite nanooxides. Adsorption 2009, 15, 89–98, doi:10.1007/s10450-009-9160-2.
[54]
Gun’ko, V.M.; Zarko, V.I.; Turov, V.V.; Oranska, O.I.; Goncharuk, E.V.; Nychiporuk, Y.M.; Pakhlov, E.M.; Yurchenko, G.R.; Leboda, R.; Skubiszewska-Zi?ba, J.; et al. Morphological and structural features of individual and composite nanooxides with alumina, silica, and titania in powders and aqueous suspensions. Powder Technol. 2009, 195, 245–258, doi:10.1016/j.powtec.2009.06.005.
[55]
Gun’ko, V.M.; Yurchenko, G.R.; Turov, V.V.; Goncharuk, E.V.; Zarko, V.I.; Zabuga, A.G.; Matkovsky, A.K.; Oranska, O.I.; Leboda, R.; Skubiszewska-Zi?ba, J.; et al. Adsorption of polar and nonpolar compounds onto complex nanooxides with silica, alumina, and titania. J. Colloid Interface Sci. 2010, 348, 546–558, doi:10.1016/j.jcis.2010.04.062.