All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles

China Foundry  2012 

Fabrication of Mg-Zn-Y-based quasi-crystal by pouring melt into different cooling media

Keywords: quasi-crystals , cooling media , magnesium alloy , Mg-Zn-Y-based alloys

Full-Text   Cite this paper   Add to My Lib


Mg-Zn-Y-based quasi-crystal (QC) alloys were fabricated by pouring melts into different cooling media. The effects of different cooling rates on the QC morphology, size, volume fraction and micro-hardness were studied. Multi-component Mg-Zn-Y-based QC alloys were synthesized based on amorphous design principle. QC morphology transformation and its influencing factors were analyzed. Micro/nano spherical quasi-crystals (QCs) were fabricated through a wedge-shaped copper mould and their forming mechanism were discussed by atoms cluster theory, optimum cooling rate theory and the known crucial criteria. The results of research show that with the cooling rate reduced, the solidified morphology of QC phase changes from near-spherical, micro petals (1 to 2 μm) to big petals (20 μm) and finally grows up to bulk pentagon or hexagon (200 to 400 μm). Multi-component micro-spherical QCs possess higher value of micro-hardness than petal-like QCs with the same components, and also higher than ternary micro-Mg-Zn-Y QCs. The fine master alloys containing micro-QCs (0.4 μm) and nano-QCs (about 300 nm and 40 nm) have been fabricated correspondingly on the middle and the tip of wedge-shaped castings. A morphology evolution schematic diagram of Mg-Zn-Y-based QCs is included in this paper.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413