Carbon nanotubes (CNTs) are increasingly being used in electronics products. CNTs have unique chemical and nanotoxicological properties, which are potentially dangerous to public health and the environment. This report presents the most recent findings of CNTs’ toxicity and discusses aspects related to incineration, recycling and potential remediation strategies including chemical and biological remediation possibilities. Our analysis shows that recycling CNTs may be challenging given their physiochemical properties and that available strategies such as power-gasification methods, biological degradation and chemical degradation may need to be combined with pre-handling routines for hazardous materials. The discussion provides the background knowledge for legislative measures concerning specialized waste handling and recycling procedures/facilities for electronics products containing CNTs.
References
[1]
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58, doi:10.1038/354056a0.
[2]
Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 1992, 359, 707–709, doi:10.1038/359707a0.
[3]
Ghadiri, M.R.; Granja, J.R.; Milligan, R.A.; McRee, D.E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993, 366, 324–327, doi:10.1038/366324a0.
[4]
Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605, doi:10.1038/363603a0.
[5]
Ajayan, P.M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science 1994, 265, 1212–1214.
[6]
Falvo, M.R.; Clary, G.J.; Taylor, R.M., 2nd; Chi, V.; Brooks, F.P.J.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582–584, doi:10.1038/39282.
[7]
Andrae, A.; Andersen, O. Life cycle assessment of integrated circuit packaging technologies. Int. J. Life Cycle Ass. 2011, 16, 258–267, doi:10.1007/s11367-011-0260-3.
[8]
Bethune, D.S.; Kiang, C.H.; Devries, M.S.; Gorman, G. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607, doi:10.1038/363605a0.
[9]
Wood, J.R.; Zhao, Q.; Frogley, M.D.; Meurs, E.R.; Prins, A.D.; Peijs, T. Carbon nanotubes: From molecular to macroscopic sensors. Phys. Rev. B 2000, 62, 7571–7575, doi:10.1103/PhysRevB.62.7571.
[10]
Dillon, A.C.; Heben, M.J. Hydrogen storage using carbon adsorbents: Past, present and future. Appl. Phys. A 2001, 72, 133–142, doi:10.1007/s003390100788.
[11]
Thostenson, E.T.; Ren, Z.F.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912, doi:10.1016/S0266-3538(01)00094-X.
Li, W.Z.; Liang, C.H.; Qiu, J.S.; Zhou, W.J.; Han, H.M.; Wie, Z.B. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 2002, 40, 791–794, doi:10.1016/S0008-6223(02)00039-8.
[15]
Hata, K.; Futaba, D.N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free singlewalled carbon nanotubes. Science 2004, 306, 1362–1364, doi:10.1126/science.1104962.
[16]
De Villoria, R.; Yamamoto, N.; Miravete, A.; Wardle, B. Multi-physics damage sensing in nano-engineered structural composites. Nanotechnology 2011, 22, 185502, doi:10.1088/0957-4484/22/18/185502.
[17]
Fan, Z.; Yan, J.; Wie, T.; Zhi, L.; Wei, F. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: High-performance anode materials for lithium ion batteries. ACS Nano 2011, 5, 2787–2794, doi:10.1021/nn200195k.
[18]
Matyba, P.; Yamaguchi, H.; Eda, G.; Chhowalla, M.; Edman, L.; Robinson, N. Graphene and mobile ions: The key to all-plastic, solution-processed light-emitting devices. ACS Nano 2010, 4, 637–642, doi:10.1021/nn9018569.
[19]
Eskelinen, A.; Kuzyk, A.; Kaltiaisenaho, T.; Timmermans, M.; Nasibulin, A.; Kaupppinen, E.; T?rm?, P. Assembly of single-walled carbon nanotubes on DNA-origami templates through streptavidin-biotin interaction. Small 2011, 7, 746–750, doi:10.1002/smll.201001750.
[20]
Chen, Z.; Zhang, X.; Yang, R.; Zhu, Z.; Chen, Y.; Tan, W. Single-walled carbon nanotubes as optical materials for biosensing. Nanoscale 2011, 3, 1949–1956, doi:10.1039/c0nr01014f.
[21]
Lu, L.; Chen, W. Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation. Nanoscale 2011, 3, 2412–2420, doi:10.1039/c1nr10113g.
Kociak, M.; Suenaga, K.; Hirahara, K.; Saito, Y.; Nakahira, T.; Iijima, S. Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys. Rev. Lett. 2002, 89, 155501–155504, doi:10.1103/PhysRevLett.89.155501.
[24]
Kumar, N.; Shah, V.; Walker, V. Perturbation of an arctic soil microbial community by metal nanoparticles. J. Hazard Mater. 2011, 190, 816–822, doi:10.1016/j.jhazmat.2011.04.005.
[25]
Doyle, M.; Watson, W.; Bowlin, N.; Sheavly, S. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 2011, 71, 41–52, doi:10.1016/j.marenvres.2010.10.001.
[26]
Walsh, B. The Perils of Plastic. Time Magazine 2010.
[27]
Velzeboer, I.; Kupryianchyk, D.; Peeters, E.; Koelmans, A. Community effects of carbon nanotubes in aquatic sediments. Environ. Int. 2011, 37, 1126–1130.
Nakanishi, J. Risk Assessment of Manufactured Nanomaterials: Carbon nanotubes (CNT). Final report issued on 12 August 2011, NEDO project (P06041); New Energy and Industrial Technology Development Organization: Kawasaki, Japan, 2011.
[30]
Lam, C.-W.; James, J.; McCluskey, R.; Arepalli, S.; Hunter, R. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36, 189–217.
Smith, C.; Shaw, B.; Handy, R. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol. 2007, 82, 94–109.
[35]
Vogel, S.; Kappes, M.; Hennrich, F.; Richert, C. An unexpected new optimum in the structure space of DNA solubilizing single-walled carbon nanotubes. Chemistry 2007, 13, 1815–1820, doi:10.1002/chem.200600988.
[36]
Kwok, K.; Leung, K.; Flahaut, E.; Cheng, J.; Cheng, S. Chronic toxicity of double-walled carbon nanotubes to three marine organisms: Influence of different dispersion methods. Nanomedicine (London) 2010, 5, 951–961.
[37]
Shvedova, A.; Kagan, V. The role of nanotoxicology in realizing the “helping without harm” paradigm of nanomedicine: Lessons from studies of pulmonary effects of single-walled carbon nanotubes. J. Intern. Med. 2010, 267, 106–118, doi:10.1111/j.1365-2796.2009.02188.x.
[38]
Teeguarden, J.; Webb-Robertson, B.; Waters, K.; Murray, A.; Kisin, E.; Varnum, S.; Jacobs, J.; Pounds, J.; Zanger, R.; Shvedova, A. Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice. Toxicol. Sci. 2011, 120, 123–135, doi:10.1093/toxsci/kfq363.
[39]
Lam, C.-W.; James, J.; McCluskey, R.; Hunter, R. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004, 77, 126.
[40]
Kane, A.; Hurt, R. Nanotoxicology: The asbestos analogy revisited. Nat. Nanotechnol. 2008, 3, 378–379, doi:10.1038/nnano.2008.182.
[41]
Jaurand, M.; Renier, A.; Daubriac, J. Mesothelioma: Do asbestos and carbon nanotubes pose the same health risk? Part. Fibre Toxicol. 2009, 6, 16, doi:10.1186/1743-8977-6-16.
[42]
Allen, B.; Kichambare, P.; Gou, P.; Vlasova, I.; Kapralov, A.; Konduru, N.; Kagan, V.; Star, A. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 2008, 8, 3899–3903, doi:10.1021/nl802315h.
[43]
Hunt, G. The Labelling “Nano-products”—Update February 2011. In Proceedings of Products, Privacy & People: Regulating at the Nanoscale, House of Lords, London, UK, 28 February 2011; BioCentre: London, UK, 2011.
[44]
European Commission. Opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials. Scientific Committee on Emerging and Newly-Identified Health Risks (SCENIHR), Health & Consumer Protection Directorate-General: Brussels, Belgium, 2011.
[45]
Gottschalk, F.; Sonderer, T.; Scholz, R.; Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216–9222, doi:10.1021/es9015553.
[46]
Murr, L.; Esquivel, E.; Bang, J.; de la Rosa, G.; Gardea-Torresdey, J. Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Res. 2004, 38, 4282–4296, doi:10.1016/j.watres.2004.08.010.
[47]
Mueller, N.; Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447–4453, doi:10.1021/es7029637.
[48]
Koelmans, A.; Nowack, B.; Wiesner, M. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ. Pollut. 2009, 157, 1110–1116, doi:10.1016/j.envpol.2008.09.006.
[49]
Salvetat, J.-P.; Bonard, J.-M.; Thomson, N.; Kulik, A.; Forr’o, L. Mechanical properties of carbon nanotubes. Appl. Phys. A 1999, A, 255.
[50]
Sanera, B.; Din?a, F.; Yürüm, Y. Utilization of multiple graphene nanosheets in fuel cells: 2. The effect of oxidation process on the characteristics of graphene nanosheets. Fuel 2011, 90, 2609–2616, doi:10.1016/j.fuel.2011.03.040.
[51]
Som, C.; Wick, P.; Krug, H.; Nowack, B. Environmental and health effects of nanomaterials in nanotextiles and fa?ade coatings. Environ. Int. 2011, 37, 1131–1142, doi:10.1016/j.envint.2011.02.013.
[52]
Sobek, A.; Bucheli, T. Testing the resistance of single- and multi-walled carbon nanotubes to chemothermal oxidation used to isolate soots from environmental samples. Environ. Pollut. 2009, 157, 1065–1071, doi:10.1016/j.envpol.2008.09.004.
[53]
Bom, D.; Andrews, R.; Jacques, D.; Anthony, J.; Bailin Chen, B.; Meier, M.; Selegue, J. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2002, 2, 615–619, doi:10.1021/nl020297u.
[54]
Vignes, A.; Dufaud, O.; Perrin, L.; Thomas, D.; Bouillard, J.; Janès, A.; Vallières, C. Thermal ignition and self-heating of carbon nanotubes: From thermokinetic study to process safety. Chem. Eng. Sci. 2009, 64, 4210–4221, doi:10.1016/j.ces.2009.06.072.
[55]
Liu, G.; Niu, Z.; Van Niekerk, D.; Xue, J.; Zheng, L. Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: Emissions, analysis, and toxicology. Rev. Environ. Contam. Toxicol. 2008, 192, 1–28.
[56]
Modina, H.; Perssona, K.; Andersson, A.; van Praaghe, M. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines. J. Hazard. Mater. 2011, 189, 749–754, doi:10.1016/j.jhazmat.2011.03.001.
[57]
Kennedy, A.; Hull, M.; Steevens, J.; Dontsova, K.; Chappell, M.; Gunter, J.; Weiss, C.J. Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ. Toxicol. Chem. 2008, 27, 1932–1941, doi:10.1897/07-624.1.
[58]
Barnard, D. Sonochemical degradation of PAH in aqueous solution. Part I: Monocomponent PAH solution. Ultrason. Sonochem. 2009, 16, 260–265.
[59]
lvarez, P.; García-Araya, J.; Beltrán, F.; Masa, F.; Medina, F. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. J. Colloid Interface Sci. 2005, 283, 503–512, doi:10.1016/j.jcis.2004.09.014.
[60]
Jonsson, S.; Persson, Y.; Frankki, S.; van Bavel, B.; Lundstedt, S.; Haglund, P.; Tysklind, M. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties. J. Hazard. Mater. 2007, 149, 86–96, doi:10.1016/j.jhazmat.2007.03.057.
[61]
Zhang, X.; Cheng, S.; Zhu, C.; Sun, S. Microbial PAH-degradation in soil: Degradation pathways and contributing factors. Pedosphere 2006, 16, 555–565, doi:10.1016/S1002-0160(06)60088-X.
[62]
Johnsen, A.; Wick, L.; Harms, H. Principles of microbial PAH-degradation in soil. Environ. Pollut. 2005, 133, 71–84.
[63]
Bianco, A.; Kostarelos, K.; Prato, M. Making carbon nanotubes biocompatible and biodegradable. Chem. Commun. (Camb). 2011, 47, 10182–10188.
[64]
Yan, J.; Cheng, S.; Zhang, X.; Shi, L.; Zhu, J. Effect of four metals on the degradation of purified terephthalic acid wastewater by Phanaerochaete chrysosporium and strain Fhhh. Bull. Environ. Contam. Toxicol. 2004, 72, 387–393.
[65]
Koukouzas, N.; Katsiadakis, A.; Karlopoulos, E.; Kakaras, E. Co-gasification of solid waste and lignite—A case study for Western Macedonia. Waste Manag. 2008, 28, 1263–1275, doi:10.1016/j.wasman.2007.04.011.
[66]
Zhao, Y.; Allen, B.; Star, A. Enzymatic degradation of multiwalled carbon nanotubes. J. Phys. Chem. A 2011, 115, 9536–9544, doi:10.1021/jp112324d.
[67]
Meyer, D.; Curran, M.; Gonzalez, M. An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. J. Environ. Tech. 2009, 43, 1256–1263.
[68]
Pol, V.; Thivagarajan, P. Remediating plastic waste into carbon nanotubes. J. Environ Monit. 2010, 12, 455–459, doi:10.1039/b914648b.