Oligomerization of Ethylene to Produce Linear α-Olefins Using Heterogeneous Catalyst Prepared by Immobilization of α-Diiminenickel(II) Complex into Fluorotetrasilicic Mica Interlayer
Heterogeneous catalysts for production of linear α-olefins from ethylene were prepared by the direct reaction of the α-diimine ligand [ L: R-N=C(R')-C(R')=N-R; R' = Me and R = 2,6-Me 2Ph ( L5), 2,5-Me 2Ph ( L1), 2-MePh ( L2), or Ph ( L3); R' = 1,8-naphth-diyl and R = Ph ( L 4)] and Ni 2+ ion-exchanged fluorotetrasilicic mica. Only high molecular weight polyethylene was obtained in the reaction using the L5/Ni 2+-Mica procatalyst activated by AlEt 3 (TEA) as an activator, whereas the TEA-activated L1- and L2/Ni 2+-Mica procatalysts afforded a mixture of a large amount of low-molecular weight polyethylene and a small amount of oligomers having 4-22 carbons. The procatalyst consisting of Ni 2+-Mica and the L3 ligand that possesses non-substituted phenyl groups on the iminonitrogen atoms effectively promoted the oligomerization of ethylene after its activation with TEA, resulting in the fact that the ethylene oligomers were produced with a moderate catalytic activity (101 g-ethylene g-cat ?1 h ?1 at 0.7 MPa-ethylene) in the presence of TEA. When the backbone was varied from the butane moiety ( L3) to acenaphthene ( L4), the solid product dramatically increased. The weight percentage of the oligomers in the total products increased with the increasing reaction temperature; however, an insignificant increase in the oligomers was observed when the ethylene pressure was decreased.
References
[1]
Lappin, G.R.; Nemec, L.H.; Sauer, J.D.; Wagner, J.D. Higher Olefins; Kirk-Othmer Encyclopedia of Chemical Technology; Wiley & Sons, Inc.: New York, NY, USA, 2000; Volume 17, pp. 709–728.
[2]
Leeuwen, P.W.N.M.; Clément, N.D.; Tschan, M.J.-L. New processes for the selective production of 1-octene. Coordin. Chem. Rev.?2011, 255, 1499–1517, doi:10.1016/j.ccr.2010.10.009.
[3]
Skupinska, J. Oligomerization of α-olefins to higher oligomers. Chem. Rev.?1991, 91, 613–648.
[4]
Shiraki, Y.; Nakamoto, Y.; Souma, Y. ZrCl4-TEA-EASC three-component catalyst for the oligomerization of ethylene: the role of organoaluminum co-catalysts and additives. J. Mol. Catal. A?2002, 187, 283–294, doi:10.1016/S1381-1169(02)00275-3.
[5]
Killian, C.M.; Johnson, L.K.; Brookhart, M. Preparation of linear α-olefins using cationic nickel(II) α-diimine catalysts. Organometallics?1997, 16, 2005–2007, doi:10.1021/om961057q.
[6]
Small, B.L.; Brookhart, M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-olefins. J. Am. Chem. Soc.?1998, 120, 7143–7144, doi:10.1021/ja981317q.
[7]
Svejda, S.A.; Brookhart, M. Ethylene oligomerization and propylene dimerization using cationic (α-diimine)nickel(II) catalysts. Organometallics?1999, 18, 65–74.
Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev.?2000, 100, 1169–1203, doi:10.1021/cr9804644.
[10]
Mecking, S. Olefin polymerization by late transition metal complexes: A root of Ziegler catalysts gains new ground. Angew. Chem. Int. Ed.?2001, 40, 534–540, doi:10.1002/1521-3773(20010202)40:3<534::AID-ANIE534>3.0.CO;2-C.
Bianchini, C.; Giambastiani, G.; Rios, I.G.; Mantovani, G.; Meli, A.; Segarra, A.M. Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino)pyridine ligands. Coord. Chem. Rev.?2010, 254, 431–455, doi:10.1016/j.ccr.2009.07.013.
[13]
Song, S.; Xiao, T.; Wang, L.; Redshaw, C.; Wang, F.; Sun, W.-H. 2-(1-Arylimino)quinolylnickel halides: synthesis, characterization and catalytic behavior towards ethylene. J. Organomet. Chem.?2012, 699, 18–25.
[14]
Kurokawa, H.; Matsuda, M.; Fujii, K.; Ishihama, Y.; Sakuragi, T.; Ohshima, M.; Miura, H. Bis(imino)pyridine iron and cobalt complexes immobilized into interlayer space of fluorotetrasilicic mica: highly active heterogeneous catalysts for polymerization of ethylene. Chem. Lett.?2007, 36, 1004–1005, doi:10.1246/cl.2007.1004.
[15]
Fujii, K.; Ishihama, Y.; Sakuragi, T.; Ohshima, M.; Kurokawa, H.; Miura, H. Heterogeneous catalysts immobilizing α-diimine nickel complexes into fluorotetrasilicic mica interlayers to prepare branched polyethylene from only ethylene. Catal. Commun.?2008, 10, 183–186.
[16]
Kondo, T.; Yamamoto, K.; Sakuragi, T.; Kurokawa, H.; Miura, H. Acetyliminopyridineiron(III) complexes immobilized in fluorotetrasilicic mica interlayer as efficient catalysts for oligomerization of ethylene. Chem. Lett.?2012, 43, 461–464.
[17]
Helld?rfer, M.; Backhaus, J.; Milius, W.; Alt, H.G. (α-Diimine)nickel(II) complexes containing chloro substituted ligands as catalyst precursors for the oligomerization and polymerization of ethylene. J. Mol. Catal. A?2003, 193, 59–70, doi:10.1016/S1381-1169(02)00468-5.
[18]
Helld?rfer, M.; Milius, W.; Alt, H.G. The influence of halogen substituents at the ligand framework of (α-diimine)nickel(II) catalyst precursors on their behavior in ethylene oligomerization and polymerization. J. Mol. Catal. A?2003, 197, 1–13, doi:10.1016/S1381-1169(02)00519-8.
[19]
Benito, J.M.; de Jesús, E.; de la Mata, F.J.; Flores, J.C.; Gómez, R.; Cómez-Sal, P. Mononuclear and dendritic nickel(II) complexes containing N,N'-iminopyridine chelating ligands: generation effects on the catalytic oligomerization and polymerization of ethylene. Organometallics?2006, 25, 3876–3887, doi:10.1021/om0509084.
[20]
Kurokawa, H.; Nakazato, Y.; Tahara, S.; Katakura, T.; Ishihama, Y.; Sakuragi, T.; Miura, H. Copolymerization of ethylene with vinyl monomers using heterogeneous catalysts consisting of α-diimine Ni (II) complexes immobilized into a fluorotetrasilicic mica interlayer in the presence of an alkylaluminum compound. Macromol. React. Eng?2013. in press.