A partially reduced TiO2 surface exhibits increasingly complex nature when forming various defects, whose stoichiometry, structure and properties are markedly different from those of bulk TiO2. Using scanning tunneling microscopy and density functional theory, we investigate different types of surface defects formed by Ti interstitials on TiO2 (110) and their reactivity toward deposited gold atoms. Sub-stoichiometric strands greatly enhance bonding of Au by transferring the excess charges from the reduced Ti3+ onto the strands. Thus the sub-stoichiometric strands behave as strong electron donor sites toward reactants. On the contrary, fully stoichiometric nanoclusters provide increased Au bonding through its 1-coordinated oxygen, which acts as a strong electron acceptor site. Specific interactions between Au and defects as well as the implication of electron donor/acceptor complexes for catalytic reactions are discussed.
References
[1]
Henrich, V.E.; Cox, P.A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, UK, 1994.
[2]
Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229, doi:10.1016/S0167-5729(02)00100-0.
[3]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38, doi:10.1038/238037a0.
Mills, A.; Davies, R.H.; Worsley, D. Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 1993, 22, 417–425, doi:10.1039/cs9932200417.
[6]
Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758, doi:10.1021/cr00035a013.
[7]
Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.
[8]
Valden, M.; Lai, X.; Goodman, D.W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650, doi:10.1126/science.281.5383.1647.
[9]
Meyer, R.; Lemire, C.; Shaikhutdinov, S.K.; Freund, H.-J. Surface chemistry of catalysis by gold. Gold Bull. 2004, 37, 72–124, doi:10.1007/BF03215519.
[10]
Wahlstr?m, E.; Lopez, N.; Schaub, R.; Thostrup, P.; R?nnau, A.; Africh, C.; L?gsgaard, E.; N?rskov, J.K.; Besenbacher, F. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2 (110). Phys. Rev. Lett. 2003, 90, 026101, doi:10.1103/PhysRevLett.90.026101.
[11]
Schaub, R.; Wahlstr?m, E.; R?nnau, A.; L?gsgaard, E.; Stensgaard, I.; Besenbacher, F. Oxygen-mediated diffusion of oxygen vacancies on the TiO2 (110) surface. Science 2003, 299, 377–379, doi:10.1126/science.1078962.
[12]
Bikondoa, O.; Pang, C.L.; Ithnin, R.; Muryn, C.A.; Onishi, H.; Thornton, G. Direct visualization of defect-mediated dissociation of water on TiO2 (110). Nature 2006, 5, 189–192.
[13]
Ganduglia-Pirovano, M.V.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 2007, 62, 219–270, doi:10.1016/j.surfrep.2007.03.002.
[14]
Onishi, H.; Iwasawa, Y. Dynamic visualization of a metal-oxide-surface/gas-phase reaction: Time-resolved observation by scanning tunneling microscopy at 800 K. Phys. Rev. Lett. 1996, 76, 791–794, doi:10.1103/PhysRevLett.76.791.
[15]
Henderson, M.A. Surface perspective on self-diffusion in rutile TiO2. Surf. Sci. 1999, 419, 174–187, doi:10.1016/S0039-6028(98)00778-X.
[16]
Bennett, R.A.; Stone, P.; Price, N.J.; Bowker, M. Two (1 × 2) reconstructions of TiO2 (110): surface rearrangement and reactivity studied using elevated temperature scanning tunneling microscopy. Phys. Rev. Lett. 1999, 82, 3831–3834, doi:10.1103/PhysRevLett.82.3831.
[17]
McCarty, K.F.; Bartelt, N.C. Role of bulk thermal defects in the reconstruction dynamics of the TiO2 (110) surface. Phys. Rev. Lett. 2003, 90, 046104, doi:10.1103/PhysRevLett.90.046104.
[18]
Park, K.T.; Pan, M.H.; Meunier, V.; Plummer, E.W. Surface reconstructions of TiO2 (110) driven by suboxides. Phys. Rev. Lett. 2006, 96, 226105, doi:10.1103/PhysRevLett.96.226105.
[19]
Shibata, N.; Goto, A.; Choi, S.-Y.; Mizoguchi, T.; Findlay, S.D.; Yamamoto, T.; Ikuhara, Y. Direct imaging of reconstructed atoms on TiO2 (110) surfaces. Science 2008, 322, 570–573, doi:10.1126/science.1165044.
[20]
Bursill, L.A.; Hyde, B.G. Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics. Prog. Solid State Chem. 1972, 7, 177–253, doi:10.1016/0079-6786(72)90008-8.
[21]
Park, K.T.; Meunier, V.; Pan, M.H.; Shelton, W.A.; Yu, N.-H.; Plummer, E.W. Nanoclusters of TiO2 wetted with gold. Surf. Sci. 2009, 603, 3131–3135, doi:10.1016/j.susc.2009.08.028.
[22]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561, doi:10.1103/PhysRevB.47.558.
[23]
Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50, doi:10.1016/0927-0256(96)00008-0.
[24]
Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186, doi:10.1103/PhysRevB.54.11169.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
[27]
Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.
[28]
Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868, doi:10.1103/PhysRevLett.77.3865.
[29]
Matthey, D.; Wang, J.G.; Wendt, S.; Matthiesen, J.; Schaub, R.; L?gsgaard, E.; Hammer, B.; Besenbacher, F. Enhanced bonding of gold nanoparticles on oxidized TiO2 (110). Science 2007, 315, 1692–1696, doi:10.1126/science.1135752.
[30]
Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990.
[31]
Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360, doi:10.1016/j.commatsci.2005.04.010.
[32]
Madsen, G.K.H.; Hammer, B. Effect of subsurface Ti-interstitials on the bonding of small gold clusters on rutile TiO2 (110). J. Chem. Phys. 2009, 130, 044704, doi:10.1063/1.3055419.
[33]
Chrétien, S.; Metiu, H. Enhanced adsorption energy of Au1 and O2 on the stoichiometric TiO2 (110) surface by coadsorption with other molecules. J. Chem. Phys. 2008, 128, 044714, doi:10.1063/1.2829405.
[34]
Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active Nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938, doi:10.1126/science.1085721.
[35]
Guzman, J.; Gates, B.C. Catalysis by Supported Gold: Correlation between catalytic activity for CO oxidation and oxidation states of gold. J. Am. Chem. Soc. 2004, 126, 2672–2673, doi:10.1021/ja039426e.
[36]
Hutchings, G.J.; Hall, M.S.; Carley, A.F.; Landon, P.; Solsona, B.E.; Kiely, C.J.; Herzing, A.; Makkee, M.; Moulijn, J.A.; Overweg, A.; et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. J. Catal. 2006, 242, 71–81.
[37]
Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A 2001, 222, 427–437, doi:10.1016/S0926-860X(01)00847-X.
[38]
Wu, X.; Senapati, L.; Nayak, S.K.; Selloni, A.; Hajaligol, M. A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters. J. Chem. Phys. 2002, 117, 4010–4015, doi:10.1063/1.1483067.
[39]
Molina, L.M.; Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett. 2003, 90, 206102, doi:10.1103/PhysRevLett.90.206102.
[40]
Camellone, M.F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483, doi:10.1021/ja902109k.
[41]
Herzing, A.A.; Kiely, C.J.; Carley, A.F.; Landon, P.; Hutchings, G.J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321, 1331–1335, doi:10.1126/science.1159639.
[42]
Rashkeev, S.N.; Luipini, A.R.; Overbury, S.H.; Pennycook, S.J.; Pantelides, S.T. Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures. Phys. Rev. B 2007, 76, 035438.
[43]
Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 2002, 6, 102–115, doi:10.1023/A:1020181423055.
[44]
Wendt, S.; Schaub, R.; Matthiesen, J.; Vestergaard, E.K.; Wahlstr?m, E.; Rasmussen, M.D.; Thostrup, P.; Molina, L.M.; L?gsgaard, E.; Stensgaard, I.; et al. xygen vacancies on TiO2 (110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci. 2005, 598, 226–245, doi:10.1016/j.susc.2005.08.041.