全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Visible Light-Photocatalytic Activity of Sulfate-Doped Titanium Dioxide Prepared by the Sol?Gel Method

DOI: 10.3390/catal3020363

Keywords: titanium dioxide, sulfate doping, sulfuric acid, ultrasonic irradiation, photocatalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sulfate-doped TiO2 was prepared from sol?gel systems containing titaniumalkoxide and sulfuric acid. The time needed for gelation of the systems was significantlyreduced by ultrasonic irradiation. The doped sulfate was observed by FTIR and XPSmeasurements. Some sulfate ions remained in the TiO2 even after heating at 300?600 °C.The UV and visible photocatalytic activities of the samples were confirmed by thedegradation of trichloroethylene (TCE). The activity of the photocatalyst samples duringthe UV irradiation strongly depended on their crystallinities rather than their specificsurface areas, i.e., adsorption ability. The degradation rate during the visible irradiationdepended on both the adsorption ability and visible absorption of the photocatalystsamples. The visible absorption induced by the sulfate-doping was effective for theTCE degradation.

References

[1]  Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C 2005, 6, 186–205, doi:10.1016/j.jphotochemrev.2005.09.001.
[2]  Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21, doi:10.1016/S1389-5567(00)00002-2.
[3]  Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett. 1986, 123, 126–128, doi:10.1016/0009-2614(86)87026-9.
[4]  Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B 2003, 42, 403–409, doi:10.1016/S0926-3373(02)00269-2.
[5]  Subagio, D.P.; Srinivasan, M.; Lim, M.; Lim, T. Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Appl. Catal. B 2010, 95, 414–422, doi:10.1016/j.apcatb.2010.01.021.
[6]  Gandhe, A.R.; Naik, S.P.; Fernandes, J.B. Selective synthesis of N-doped mesoporous TiO2 phases having enhanced photocatalytic activity. Microporous Mesoporous Mater. 2005, 87, 103–109, doi:10.1016/j.micromeso.2005.07.017.
[7]  Choi, H.; Antoniou, M.G.; Pelaez, M.; De la Cruz, A.A.; Shoemaker, J.A.; Dionysiou, D.D. Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ. Sci. Technol. 2007, 41, 7530–7535, doi:10.1021/es0709122.
[8]  Jagadale, T.C.; Takale, S.P.; Sonawane, R.S.; Joshi, H.M.; Patil, S.I.; Kale, B.B.; Ogale, S.B. N-Doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. J. Phys. Chem. C 2008, 112, 14595–14602.
[9]  Ananpattarachai, J.; Kajitvichyanukul, P.; Seraphin, S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazardous Mater. 2009, 168, 253–261, doi:10.1016/j.jhazmat.2009.02.036.
[10]  Yokosuka, Y.; Oki, K.; Nishikiori, H.; Tatsumi, Y.; Tanaka, N.; Fujii, T. Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol-gel process. Res. Chem. Intermed. 2009, 35, 43–53, doi:10.1007/s11164-008-0019-z.
[11]  Nishikiori, H.; Fukasawa, Y.; Yokosuka, Y.; Fujii, T. Nitrogen doping into titanium dioxide by the sol-gel method using nitric acid. Res. Chem. Intermed. 2011, 37, 869–881, doi:10.1007/s11164-011-0294-y.
[12]  Dong, C.X.; Xian, A.P.; Ham, E.H.; Shang, J.K. Acid-mediated sol-gel synthesis of visible-light active photocatalysts. J. Mater. Sci. 2006, 41, 6168–6170, doi:10.1007/s10853-006-0247-9.
[13]  Oki, K.; Tsuchida, S.; Nishikiori, H.; Tanaka, N.; Fujii, T. Photocatalytic degradation of chlorinated ethenes. Int. J. Photoenergy 2003, 5, 11–15, doi:10.1155/S1110662X03000059.
[14]  Oki, K.; Yamada, S.; Tsuchida, S.; Nishikiori, H.; Tanaka, N.; Fujii, T. Degradation and isomerization of 1,2-dichloroethenes by photocatalytic reactions. Res. Chem. Intermed. 2003, 29, 827–837, doi:10.1163/156856703322601834.
[15]  Liu, Y.; Liu, J.; Lin, Y.; Zhang, Y.; Wei, Y. Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceramics Int. 2009, 35, 3061–3065, doi:10.1016/j.ceramint.2009.04.021.
[16]  Han, C.; Pelaez, M.; Likodimos, V.; Kontos, A.G.; Falaras, P.; O’Shea, K.; Dionysiou, D.D. Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B 2011, 107, 77–87, doi:10.1016/j.apcatb.2011.06.039.
[17]  Muggli, D.S.; Ding, L. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Appl. Catal. B 2001, 32, 181–194, doi:10.1016/S0926-3373(01)00137-0.
[18]  Noda, L.K.; de Almeida, R.M.; Gon?alves, N.S.; Probst, L.F.D.; Sala, O. TiO2 with a high sulfate content—thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity. Catal. Today 2003, 85, 69–74.
[19]  Wang, X.; Yu, J.C.; Liu, P.; Wang, X.; Su, W.; Fu, X. Probing of photocatalytic surface sites on SO42?/TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. J. Photochem. Photobiol. A 2006, 179, 339–347, doi:10.1016/j.jphotochem.2005.09.007.
[20]  Maira, A.J.; Yeung, K.L.; Lee, C.Y.; Yue, P.L.; Chan, C.K. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catal. 2000, 192, 185–196.
[21]  Nishikiori, H.; Tanaka, N.; Kitsui, T.; Fujii, T. Photocurrent observed in dye-doped titania gel. J. Photochem. Photobiol. A 2006, 179, 125–129, doi:10.1016/j.jphotochem.2005.08.010.
[22]  Nishikiori, H.; Uesugi, Y.; Takami, S.; Setiawan, R.A.; Fujii, T.; Qian, W.; El-Sayed, M.A. Influence of steam treatment on dye-titania complex formation and photoelectric conversion property of dye-doped titania gel. J. Phys. Chem. C 2011, 115, 2880–2887.
[23]  Nishikiori, H.; Setiawan, R.A.; Miyamoto, K.; Sukmono, G.; Uesugi, Y.; Teshima, K.; Fujii, T. Photoinduced electron transport in dye-containing titania gel films. RSC Adv. 2012, 2, 4258–4267.
[24]  Tarte, P. The Determination of Cation Co-cordination in Glasses by Infra-red Spectroscopy. In Physics of Non-Crystalline Solids; Prins, J.A., Ed.; North Holland: Amsterdam, The Netherlands, 1965; pp. 549–565.
[25]  Galzada, M.L.; Delolmo, L. Sol-gel processing by inroganic route to obtain a TiO2-PbO xerogel as ceramic precursor. J. Non-Cryst. Solids 1990, 121, 413–416.
[26]  Ben Amor, S.; Baud, G.; Besse, J.P.; Jacquet, M. Structural and optical properties of sputtered Titania films. Mater. Sci. Eng. 1997, 47, 110–118, doi:10.1016/S0921-5107(97)00027-5.
[27]  Casta?eda, L.; Alonso, J.C.; Ortiz, A.; Andrade, E.; Saniger, J.M.; Ba?uelos, J.G. Spray pyrolysis deposition and characterization of titanium oxide thin films. Mater. Chem. Phys. 2003, 77, 938–944, doi:10.1016/S0254-0584(02)00193-1.
[28]  Nam, S.; Kim, T.K.; Boo, J. Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light. Catal. Today 2012, 185, 259–262.
[29]  Yang, G.; Yan, Z.; Xiao, T. Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal. Appl. Surface Sci. 2012, 258, 4016–4022, doi:10.1016/j.apsusc.2011.12.092.
[30]  Ohno, T.; Mitsui, T.; Matsumura, M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett. 2003, 32, 364–365, doi:10.1246/cl.2003.364.
[31]  Nakahira, A.; Yokota, K.; Kubo, T.; Takahashi, M. Synthesis and characterization of S-doped TiO2 made by anodic oxidation of titanium in sulfuric acid. Chem. Lett. 2007, 36, 1318–1319, doi:10.1246/cl.2007.1318.
[32]  Kim, J.S.; Itoh, K.; Murabayashi, M.; Kim, B.A. Pretreatment of the photocatalyst and the photocatalytic degradation of trichloroethylene in the gas-phase. Chemosphere 1999, 38, 2969–2978, doi:10.1016/S0045-6535(98)00499-8.
[33]  Amama, P.B.; Itoh, K.; Murabayashi, M. Photocatalytic oxidation of trichloroethylene in humidified atmosphere. J. Mol. Catal. A 2001, 176, 165–172, doi:10.1016/S1381-1169(01)00249-7.
[34]  Kang, M.; Lee, J.H.; Lee, S.H.; Chung, C.H.; Yoon, K.J.; Ogino, K.; Miyata, S.; Choung, S.J. Preparation of TiO2 film by the MOCVD method and analysis for decomposition of trichloroethylene using in situ FT-IR spectroscopy. J. Mol. Catal. A 2003, 193, 273–283, doi:10.1016/S1381-1169(02)00474-0.
[35]  Nakamura, R.; Tanaka, T.; Nakato, Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B 2004, 108, 10617–10620, doi:10.1021/jp048112q.
[36]  Joung, S.K.; Amemiya, T.; Murabayashi, M.; Itoh, K. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts. Chemistry 2006, 12, 5526–5534, doi:10.1002/chem.200501020.
[37]  Jacoby, W.A.; Nimlos, M.R.; Blake, D.M.; Noble, R.D.; Koval, C.A. Products, intermediates, mass balances, and reaction pathways for the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Environ. Sci. Technol. 1994, 28, 1661–1668, doi:10.1021/es00058a018.
[38]  Fan, J.; Yates, J.T., Jr. Mechanism of photooxidation of trichloroethylene on TiO2:? Detection of intermediates by infrared spectroscopy. J. Am. Chem. Soc. 1996, 118, 4686–4692.
[39]  Driessen, M.D.; Goodman, A.L.; Miller, T.M.; Zaharias, G.A.; Grassian, V.V. Gas-phase photooxidation of trichloroethylene on TiO2 and ZnO: Influence of trichloroethylene pressure, oxygen pressure, and the photocatalyst surface on the product distribution. J. Phys. Chem. B 1998, 102, 549–556.
[40]  Kim, J.S.; Itoh, K.; Murabayashi, M. Photocatalytic degradation of trichloroethylene in the gas phase over TiO2 sol-gel films: Analysis of products. Chemosphere 1998, 36, 483–495, doi:10.1016/S0045-6535(97)00370-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133