全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Heterogeneous Photocatalysis: Recent Advances and Applications

DOI: 10.3390/catal3010189

Keywords: semiconductor, photocatalysis, band gap, illumination, reactor, catalyst, mineralization, degradation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Semiconductor heterogeneous photocatalysis, the subject of this review, is a versatile, low-cost and environmentally benign treatment technology for a host of pollutants. These may be of biological, organic and inorganic in origin within water and air. The efficient and successful application of photocatalysis demands that the pollutant, the catalyst and source of illumination are in close proximity or contact with each other. The ability of advanced oxidation technology to remove low levels of persistent organic pollutants as well as microorganisms in water has been widely demonstrated and, progressively, the technology is now being commercialized in many areas of the world including developing nations. This review considers recent developments in the research and application of heterogeneous semiconductor photocatalysis for the treatment of low-level concentrations of pollutants in water and air using titanium dioxide as a “model” semiconductor. The review considers charge transport characteristics on the semiconductor surface, photocatalyst reactor design and organic degradation mechanistic pathways. The effects of photoreactor operating parameters on the photocatalytic process are discussed in addition to mineralization and disinfection kinetics.

References

[1]  Teoh, W.Y.; Amal, R.; Scott, J. Progress in heterogenours photocatalysis: From classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 2012, 3, 629–639, doi:10.1021/jz3000646.
[2]  Kamat, P. TiO2 nanostructures: Recent physical chemistry advances. J. Phys. Chem. Lett. 2012, 116, 11849–11851, doi:10.1021/jp305026h.
[3]  Weir, A.; Westerhoff, P.; Fabricus, L.; Hristovski, K.; von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250.
[4]  Ibhadon, A.O. Multifunctional TiO2 Catalysis and Applications. In Proceedings of Green Chemistry and Engineering International Conference, Washington, DC, USA, 24–26 June 2008.
[5]  Sodis Water Project. Available online: http://cordis.europa.eu/documents/documentlibrary/122807461EN6.pdf (accessed on 20 February 2013).
[6]  Cho, M.; Chung, H.; Choi, W.; Yoon, J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res. 2004, 38, 1069–1077, doi:10.1016/j.watres.2003.10.029.
[7]  Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582, doi:10.1016/j.surfrep.2008.10.001.
[8]  Ibhadon, A.O.; Yue, Y.; Greenway, G.M. The photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation. Catal. Commun. 2008, 9, 153–157, doi:10.1016/j.catcom.2007.05.038.
[9]  Kamat, P.V. Manipulation of charge transfer across semiconductor Interface. J. Phy. Chem. Lett. 2012, 3, 663–672, doi:10.1021/jz201629p.
[10]  Chen, D.; Ray, A.K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 2001, 56, 1561–1570, doi:10.1016/S0009-2509(00)00383-3.
[11]  Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A.C.M. Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol. 2001, 77, 102–116.
[12]  Kamat, P.V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 2010, 1, 520–527.
[13]  Blake, D.M. Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air; National Renewable Energy Laboratory: Denver, CO, USA, 2001; pp. 1–158.
[14]  Schmitt-Kopplin, P.; Hertkorn, N.K.A. Structural changes in dissolved soil humic matter during photochemical degradation processes under nitrogen and oxygen atmospheres. Environ. Sci. Technol. 1998, 32, 2531–2541, doi:10.1021/es970636z.
[15]  Paleologou, A.; Marakas, H.; Xekoukoulotakis, N.P.; Moya, A.; Vergara, Y.; Kalogerakis, N.; Gikas, P.; Mantzavinos, D. Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catal. Today 2007, 129, 136–142.
[16]  Sunada, K.; Watanabe, T.; Hashimoto, K. Studies on photo-killing of bacteria on TiO2 thin film. J. Photochem. Photobiol. A 2003, 156, 227–233, doi:10.1016/S1010-6030(02)00434-3.
[17]  Daneshvar, N.; Niaei, A.; Akbari, S.; Aber, S.; Kazemian, N. Photocatalytic disinfection of water polluted with Pseudomonas aeruginosa. Glob. Nest J. 2007, 9, 132–136.
[18]  Pirkanniemi, K.; Sillanpa, M. Heterogeneous water phase catalysis as an environmental application: A review. Chemosphere 2002, 48, 1047–1060, doi:10.1016/S0045-6535(02)00168-6.
[19]  Huang, A.; Cao, L.; Chen, J.; Spiess, F.J.; Suib, S.L.; Obee, T.N.; Hay, S.O.; Freihaut, J.D. Photocatalytic degradation of triethylamine on titanium dioxide thin films. J. Catal. 1999, 188, 40–47.
[20]  Arabatzis, I.M.; Antonaaraki, S.; Stergiopoulos, T.; Hiskia, A.; Papaconstantinou, E.; Bernard, M.C.; Falaras, P. Enhanced performance of dye-sensitized solar cells via plasmonic sandwiched structure. J. Photochem. Photobiol. A 2002, 149, 237–245, doi:10.1016/S1010-6030(01)00645-1.
[21]  Al-Rasheed, R.A. Water Treatment by Heterogeneous Photocatalysis: An Review. In Proceedings of the 4th SWCC Acquired Experience Symposium, Jeddah, Saudi Arabia, 7 May 2005.
[22]  Bekbolet, M.; Boyacioglu, Z.; Ozkaraova, B. The influence of solution matrix on the photocatalytic removal of color from natural waters. Water Sci. Technol. 1998, 38, 155–162.
[23]  Mills, A.; Belghazi, A.; Rodman, D. Bromate removal from water by semiconductor photocatalysis. Water Res. 1996, 3, 1973–1978, doi:10.1016/0043-1354(96)00012-7.
[24]  Kokorin, A.I.; Bahnemann, D.W. Chemical Physics of Nanostructured Semiconductors; VSP: Boston, MA, USA, 2003.
[25]  Mills, A.; Lehunte, S. An overview of semiconductor photocatalysis. Chem. Soc. Rev. 1997, 22, 417–425, doi:10.1039/cs9932200417.
[26]  Gerischer, H. Electrochemical behaviour of semiconductors under illumination. J. Electrochem. Soc. 1966, 113, 1174–1182, doi:10.1149/1.2423779.
[27]  Minero, C.; Pelizzatti, E.; Sega, M.; Friberg, S.E.; Sjoblom, J. The role of humic substances in photocatalytic degradation of water contaminants. J. Dispersion. Sci. Technol. 1999, 20, 643–661, doi:10.1080/01932699908943812.
[28]  Cherepy, N.J.; Liston, D.B.; Lovejoy, J.A.; Deng, H.; Zhang, J.Z. Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B 1998, 102, 770–776.
[29]  Eggleston, C.M. Toward new uses for hematite. Science 2008, 320, 184–185, doi:10.1126/science.1157189.
[30]  Kleiman-Shwarsctein, A.; Hu, Y.S.; Forman, A.J.; Stucky, G.D.; McFarland, E. Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 2008, 112, 15900–15907.
[31]  Teoh, W.Y.; Denny, F.; Amal, R.; Friedmann, D.; M?dler, L.; Pratsinis, S.E. Photocatalytic mineralisation of organic compounds: A comparison of flame-made TiO2 catalysts top. Catalysis 2007, 44, 489–497.
[32]  Teoh, W.Y.; M?dler, L.; Amal, R. Inter-relationship between Pt oxidation states on TiO2 and the photocatalytic mineralisation of organic matter. J. Catal. 2007, 251, 271–280, doi:10.1016/j.jcat.2007.08.008.
[33]  Teoh, W.Y.; M?dler, L.; Beydoun, D.; Pratsinis, S.E.; Amal, R. Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose. Chem. Eng. Sci. 2005, 60, 5852–5861, doi:10.1016/j.ces.2005.05.037.
[34]  Tran, H.; Chiang, K.; Scott, J.; Amal, R. Understanding selective enhancement by silver during photocatalytic oxidation. Photochem. Photobiol. Sci. 2005, 4, 565–567, doi:10.1039/b506320e.
[35]  Cesar, I.; Kay, A.; Gonzalez-Martinez, J.A.; Gr?tzel, M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 2006, 128, 4582–4583.
[36]  Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc. 2008, 130, 7780–7781.
[37]  Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nano-junction system. Nat. Mater. 2006, 5, 782–786, doi:10.1038/nmat1734.
[38]  Bickley, R.I.; Gonzalez-Carreno, T.; Lees, J.S.; Palmisano, R.L.; Tilley, J.D. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92, 178–190, doi:10.1016/0022-4596(91)90255-G.
[39]  Gaffney, J.S.; Marley, N.A.; Clark, S.B. Humic and Fulvic Acids and Organic Colloidal Material in the Environmen. In Humic and Fulvic Acids: Isolation, Structure, and Environmental Role; American Chemical Society: Washington, DC, USA, 1996.
[40]  Ohno, T.; Sarukawa, K.; Matsumura, M. Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 2001, 105, 2417–2420, doi:10.1021/jp003211z.
[41]  Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549.
[42]  Li, G.; Chen, L.; Graham, M.E.; Gray, K.A. A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interface. J. Mol. Catal. A 2007, 275, 30–35, doi:10.1016/j.molcata.2007.05.017.
[43]  Ohtani, B.; Prieto-Mahaney, O.O.; Lia, D.; Abe, R. What is degussa (evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A 2010, 218, 179–182.
[44]  Ryu, J.; Choi, W. Substrate specific photocatalytic activities of TiO2 and multiactivity test for water treatment application. Environ. Sci. Technol. 2008, 42, 294–300, doi:10.1021/es071470x.
[45]  Tanka, S.; Oba, K.; Fukushima, M.; Nakayasu, K.; Hasebe, K. Water solubility enhancement of pyrene in the presence of humic substances. Anal. Chim. Acta 1997, 337, 351–357, doi:10.1016/S0003-2670(96)00422-9.
[46]  Ohtani, B. Preparing articles on photocatalysis—Beyond the illusions, misconceptions, and speculation. Chem. Lett. 2008, 37, 217–229, doi:10.1246/cl.2008.216.
[47]  Memming, R. Applications in Semiconductor Electrochemistry; Wiley-VCH: Weinheim, Germany, 2007.
[48]  Coleman, H.M.; Chiang, K.; Amal, R. Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water. Chem. Eng. J. 2005, 113, 65–72, doi:10.1016/j.cej.2005.07.014.
[49]  Kho, Y.K.; Teoh, W.Y.; M?dler, L.; Amal, R. Dopant-free, polymorphic design of TiO2 nanocrystals by flame aerosol synthesis. Chem. Eng. Sci. 2011, 66, 2409–2416, doi:10.1016/j.ces.2011.02.058.
[50]  Denny, F.; Scott, J.; Chiang, K.; Teoh, W.Y.; Amal, R. Insight towards the role of platinum in the photocatalytic mineralisation of organic compounds. J. Mol. Catal. A 2007, 263, 93–102, doi:10.1016/j.molcata.2006.08.031.
[51]  Kudo, A. Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull. 2011, 36, 32–38, doi:10.1557/mrs.2010.3.
[52]  Young, C.; Lim, T.M.; Chiang, K.; Scott, J.; Amal, R. Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Appl. Catal. BEnviron. 2008, 78, 1–10, doi:10.1016/j.apcatb.2007.08.011.
[53]  Lee, J.; Choi, W. Photocatalytic reactivity of surface platinized TiO2: Substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 2005, 109, 7399–7406, doi:10.1021/jp044425+.
[54]  Wei, Y.; Han, S.; Walker, D.A.; Warren, S.C.; Grzybowski, B.A. Enhanced photocatalytic activity of hybrid Fe2O3-Pd nanoparticle catalyst. Chem. Sci. 2012, 3, 1090–1094, doi:10.1039/c2sc00673a.
[55]  Xu, Q.C.; Ng, Y.H.; Zhang, Y.; Loo, J.S.C.; Amal, R.; Tan, T.T.Y. A three-way synergy of triple-modified Bi2WO6/Ag/N-TiO2 nanojunction film for enhanced photogenerated charges utilization. Chem. Commun. 2011, 47, 8641–8643.
[56]  Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216, 505–516, doi:10.1016/S0021-9517(02)00104-5.
[57]  Rajeshwar, K.; Osugi, M.E.; Chanmanee, W.; Chethanmarakshan, C.R.; Zanoni, M.V.B.; Kajitvichyanukul, P.; Krishnan-Ayer, R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 2008, 9, 171–192, doi:10.1016/j.jphotochemrev.2008.09.001.
[58]  Nah, Y.C.; Paramasivam, I.; Hahn, R.; Shrestha, N.K.; Schmuki, P. Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse. Nanotechnology 2010, 21, 105704, doi:10.1088/0957-4484/21/10/105704.
[59]  Lam, S.W.; Chiang, K.; Lim, T.M.; Amal, R.; Low, G.K.C. The effect of platinum and silver deposits in the photocatalytic oxidation of resorcinol. Appl. Catal. B 2007, 72, 363–372, doi:10.1016/j.apcatb.2006.11.019.
[60]  Di Paolo, A.; Marci, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: Characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B 2009, 106, 637–645.
[61]  Teoh, W.Y.; Amal, R.; M?dler, L.; Pratsinis, S.E. Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catal. Today 2007, 120, 203–213.
[62]  Serpone, N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 2006, 110, 24287–24293, doi:10.1021/jp065659r.
[63]  Murase, T.; Irie, H.; Hashimoto, K. Visible light sensitive photocatalysts, nitrogen-doped Ta2O5 powders. J. Phys. Chem. B 2004, 108, 15803–15807, doi:10.1021/jp047874i.
[64]  Emeline, A.V.; Sheremetyeva, N.V.; Khomchenko, N.V.; Kuzmin, G.N.; Ryabchuk, V.K.; Teoh, W.Y.; Amal, R. Spectroscopic studies of pristine and fluorinated nano-ZrO2 in photostimulated heterogeneous processes. J. Phys. Chem. C 2009, 113, 4566–4574.
[65]  Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271, doi:10.1126/science.1061051.
[66]  Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908–4911, doi:10.1002/anie.200351577.
[67]  Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 2002, 81, 454, doi:10.1063/1.1493647.
[68]  Wang, L.; Mukheji, A.; Lu, G.Q.; Sun, C.; Smith, S.C. Photocatalytic hydrogen production from water using N-doped Ba5Ta2415 under solar irradiation. J. Phys. Chem. C 2011, 115, 15674–15678.
[69]  Yu, J.C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808–3816, doi:10.1021/cm020027c.
[70]  Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177.
[71]  Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem. Mater. 2005, 17, 2596–2602.
[72]  Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J. Phys. Chem. C 2007, 111, 5259–5275, doi:10.1021/jp069005u.
[73]  Sun, L.; Zhao, X.; Sun, H.; Li, Y.; Li, P.; Fan, W.; Cheng, X. Evaluating the C, N and F pairwise codoping effect on the enhanced photoactivity of ZnWO4: The charge compensation mechanism in donor-acceptor pairs. J. Phys. Chem. C 2011, 115, 15516–15524.
[74]  Yamakata, A.; Ishibashi, T.; Kato, H.; Kudo, A.; Onishi, H. Photodynamics of NaTaO3 catalysts for efficient water splitting. J. Phys. Chem. B 2003, 107, 14383–14387.
[75]  Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem.Soc. Rev. 2009, 38, 253–278, doi:10.1039/b800489g.
[76]  Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661, doi:10.1021/jz1007966.
[77]  Tang, J.; Zou, Z.; Ye, J. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 2004, 43, 4463–4466, doi:10.1002/anie.200353594.
[78]  Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.
[79]  Kim, H.G.; Hwang, D.W.; Lee, J.S. An undoped, single-phase oxide photocatalyst working under visible light. J. Am. Chem. Soc. 2004, 126, 8912–8913.
[80]  Yan, S.C.; Ouyang, S.X.; Gao, J.; Yang, M.; Feng, J.Y.; Fan, X.X.; Wan, L.J.; Li, Z.S.; Ye, J.H.; Zhou, Y.; et al. A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew. Chem. Int. Ed. 2010, 122, 6544–6548, doi:10.1002/ange.201003270.
[81]  Chang, H.T.; Wu, N.M.; Zhu, F. A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO2 catalyst. Water Res. 2000, 34, 407–416, doi:10.1016/S0043-1354(99)00247-X.
[82]  Arabatzis, M.I.; Falaras, P. Synthesis of TiO2 foam. Nano Lett. 2003, 3, 249–251, doi:10.1021/nl0259028.
[83]  Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 2007, 107, 2891–2959, doi:10.1021/cr0500535.
[84]  Joanna, G.; Maciej, H.; Antoni, W.M. Photocatalytic decompstion of oil in water. Water Res. 2000, 34, 1638–1644, doi:10.1016/S0043-1354(99)00275-4.
[85]  Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297, doi:10.1016/j.surfrep.2011.01.001.
[86]  Ibhadon, A.O.; Yue, Y.; Greenway, G.M.; Falaras, P.; Tsoukleris, D. The photocatalytic activity of TiO2 foam and surface modified binary oxide nanoparticles. J. Photochem. Photobiol. A 2008, 197, 321–328, doi:10.1016/j.jphotochem.2008.01.010.
[87]  Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.
[88]  Kontos, A.G.; Pelaez, M.; Likodimos, V.; Vaenas, N.; Dionysiou, D.D.; Falaras, P. Isible light induced wetting of nanostructured N-F co-doped titania films. Photochem. Photobiol. Sci. 2011, doi:10.1039/c0pp00159g/.
[89]  Legrini, O.; Oliveros, E.; Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698, doi:10.1021/cr00018a003.
[90]  Ibhadon, A.O.; Yue, Y.; Greenway, G. Design and synthesis of polymetallic nanoparticles and their catalytic applications. Mater. Lett. 2011, 65, 602–605, doi:10.1016/j.matlet.2010.11.011.
[91]  Prieto-Mahaney, O.O.; Murakami, N.; Abe, R.; Ohtani, B. Correlation between photocatalytic activities and structural and physical properties of titanium dioxide powders. Chem. Lett. 2009, 38, 238–239, doi:10.1246/cl.2009.238.
[92]  Akira, F.; Rao, T.; Tryk, D. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21, doi:10.1016/S1389-5567(00)00002-2.
[93]  Denny, F.; Scott, J.; Peng, G.D.; Amal, R. Channelled optical fibre photoreactor for improved air quality control. Chem. Eng. Sci. 2010, 65, 882–889, doi:10.1016/j.ces.2009.09.038.
[94]  Xu, N.; Shi, Z.; Fam, Y.; Dong, J.; Shi, J.; Hu, M.Z.C. Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind. Eng. Chem. Res. 1999, 38, 373–379, doi:10.1021/ie980378u.
[95]  Fang, W.Q.; Gong, X.Q.; Yang, H.G. On the unusual properties of anatase TiO2 exposed by highly reactive facets. J. Phys. Chem. Lett. 2011, 2, 725–734, doi:10.1021/jz200117r.
[96]  Hsien, Y.H.; Chang, C.F.; Chen, Y.H.; Cheng, S. Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves. Appl. Catal. B 2001, 31, 241–249, doi:10.1016/S0926-3373(00)00283-6.
[97]  Al-Rasheed, R.; Cardin, D.J. Photocatalytic degradation of humic acid in saline waters. Part 2. Effect of various photocatalytic materials. Appl. Catal. A 2003, 246, 39–48, doi:10.1016/S0926-860X(02)00667-1.
[98]  Herrmann, J.M. Fundamentals and misconceptions in photocatalysis. J. Photochem. Photobiol. A 2010, 216, 85–93, doi:10.1016/j.jphotochem.2010.05.015.
[99]  Ibhadon, A.O.; Falaras, P.; Tsoukleris, D.S.; Arabatzis, I.M. The design and photoreaction kinetic modeling of a gas-phase titania foam packed bed reactor. Chem. Eng. J. 2007, 133, 317–323, doi:10.1016/j.cej.2007.02.018.
[100]  Eggins, B.R.; Palmer, F.L.; Bryne, J.A. Photocatalytic treatment of humic substances in drinking water. Water Res. 1997, 31, 1223–1226, doi:10.1016/S0043-1354(96)00341-7.
[101]  Kerc, A.; Bekbolet, M.; Saatci, A.M. Effect of partial oxidation by ozonation on the photocatalytic degradation of humic acids. Int. J. Photoenergy 2003, 5, 75–80, doi:10.1155/S1110662X03000163.
[102]  Matatov, M.Y.I.; Sheintuch, M. Catalytic abatement of water pollutants. Ind. Eng. Chem. Res. 1998, 37, 309–326, doi:10.1021/ie9702439.
[103]  Bekbolet, M.; Ozkosemen, G. A preliminary investigation on the photocatalytic degradation of a model humic acid. Water Sci. Technol. 1996, 33, 189–194.
[104]  Praire, M.R.; Stange, B.M.; Evans, I.R. Photocatalytic Purification and Treatment of Water and Air; Ollis, D.F., Al-Ekabi, H., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 353–363.
[105]  Fukushima, M.; Tatsumi, K.; Moimoto, K. Influence of Fe (III) and humic acid on the phototodegradation of pentachlorophenol. Environ. Toxicol. Chem. 2000, 19, 1711–1716, doi:10.1002/etc.5620190703.
[106]  Ohama, Y.; van Gemert, D. Application of Titanium Dioxide Photocatalysis to Construction Materials; Springer: London, UK, 2011; pp. 15–33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133