The purpose of this study is to present an “environmental catalyst” possessing both thermocatalytic activity and visible-light activity for the decomposition of organic pollutants. Molecule-sized MnO x clusters are highly dispersed on the surface of TiO 2 (anatase/rutile = 4/1 w/ w, P-25, Degussa) by the chemisorption-calcination cycle technique using Mn(acac) 3 complex as a precursor (MnO x/TiO 2). The thermo- and photo-catalytic activities of MnO x/TiO 2 were studied for the degradation of 2-naphthol used as a model water pollutant. In contrast to the FeO x/TiO 2 system, MnO x/TiO 2 exhibits high thermocatalytic activity exceeding those of bulk β-?β-MnO 2 and Mn 2O 3. Also, visible-light activity is induced by the surface modification of TiO 2 with MnO x clusters, whereas its UV-light activity decreases.
References
[1]
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582, doi:10.1016/j.surfrep.2008.10.001.
[2]
Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285, doi:10.1143/JJAP.44.8269.
[3]
Sinha, A.K.; Suzuki, K.; Takahara, M.; Azuma, H.; Nonaka, T.; Fukumoto, K. Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification. Angew. Chem. Int. Ed. 2007, 46, 2891–2894.
[4]
Chen, H.; He, J.; Zhang, C.; He, H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J. Phys. Chem. C 2007, 111, 18033–18038, doi:10.1021/jp076113n.
[5]
Xing, S.; Hu, C.; Qu, J.; He, H.; Yang, M. Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone. Environ. Sci. Technol. 2008, 42, 3363–3368, doi:10.1021/es0718671.
[6]
Tang, X.; Chen, J.; Huang, X.; Xu, Y.; Shen, W. Pt/MnOx—CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Appl. Catal. B 2008, 81, 115–121, doi:10.1016/j.apcatb.2007.12.007.
[7]
Nishimura, N.; Tanikawa, J.; Fujii, M.; Kawahara, T.; Ino, J.; Akita, T.; Fujino, T.; Tada, H. A green process for coupling manganese oxides with titanium(IV) dioxide. Chem. Commun. 2008, 3564–3566.
[8]
Tada, H. Encyclopedia of Surface and Colloid Science; Hubbard, A.T., Ed.; Marcel Dekker: New York, NY, USA, 2002.
[9]
Zhang, H.; Chen, G.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121, doi:10.1039/b821991e.
Tada, H.; Jin, Q.; Nishijima, H.; Yamamoto, H.; Fujishima, M.; Okuoka, S.-I.; Hattori, T.; Sumida, Y.; Kobayashi, H. Titanium(IV) dioxide surface-modified with iron oxide as a visible light photocatalyst. Angew. Chem. Int. Ed. 2011, 50, 3501–3505, doi:10.1002/anie.201007869.
[12]
Jin, Q.; Fujishima, M.; Tada, H. Visible-light-active iron oxide-modified anatase titanium(IV) dioxide. J. Phys. Chem. C 2011, 115, 6478–6483.
[13]
Muramatsu, Y.; Jin, Q.; Fujishima, M.; Tada, H. Visible-light-activation of TiO2 nanotube array by the molecular iron oxide surface modification. Appl. Catal. B 2012, 119–120, 74–80.
[14]
Jin, Q.; Ikeda, T.; Fujishima, M.; Tada, H. Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst. Chem. Commun. 2011, 47, 8814–8816.
[15]
Nolan, M. Surface modification of TiO2 with metal oxide nanoclusters: A route to composite photocatalytic materials. Chem. Commun. 2011, 47, 8617–8619, doi:10.1039/c1cc13243a.
[16]
Nolan, M.; Iwaszuk, A.; Tada, H. Molecular metal oxide cluster-surface modified titanium(IV) dioxide photocatalysts. Aust. J. Chem. 2012, 65, 624–632, doi:10.1071/CH11451.
[17]
Jin, Q.; Fujishima, M.; Nolan, M.; Iwaszukb, A.; Tada, H. Photocatalytic activities of tin(IV) oxide surface-modified titanium(IV) dioxide show a strong sensitivity to the TiO2 crystal form. J. Phys. Chem. C 2012, 116, 12621–12626.
[18]
Papadimitriou, V.C.; Stefanopoulos, V.G.; Romanias, M.N.; Papagiannakopoulos, P.; Sambani, K.; Tudose, V.; Kiriakidis, G. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin Solid Films 2011, 520, 1195–1201, doi:10.1016/j.tsf.2011.07.073.
[19]
Fujishima, M.; Jin, Q.; Yamamoto, H.; Tada, H.; Nolan, M. Tin oxide-surface modified anatase titanium(IV) dioxide with enhanced UV-light photocatalytic activity. Phys. Chem. Chem. Phys. 2012, 14, 705–711, doi:10.1039/c1cp22708d.
[20]
Tan, B.J.; Klabunde, K.J.; Sherwood, P.M.A. XPS studies of solvated metal atom dispersed catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855–861.
[21]
Tada, H.; Jin, Q.; Kobayashi, H. Prediction of the main route in the TiO2-photocatalyzed degradation of organics in water by density functional theory calculations. ChemPhysChem 2012, 13, 3457–3461, doi:10.1002/cphc.201200382.