全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Vitro Chloroquine Resistance in Plasmodium falciparum Isolates from Tertiary Care Hospital

DOI: 10.1155/2012/538481

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chloroquine (CQ) has been the mainstay of treatment of malaria for decades. This cost-effective and safe drug has become ineffective for treatment of falciparum malaria in many parts of the world due to development of resistance by the parasite. In addition CQ is not gametocytocidal for P. falciparum and thus cannot block transmission. The extent of problem of chloroquine resistance in P. falciparum is increasing every year. The study was done in period of 2 years. A total of 5653 specimens were examined for malarial infection by employing different diagnostic modalities. Four hundred and thirty-five were found to be positive for P. falciparum by using different diagnostic techniques. All positive specimens were cultured on RPMI 1640 medium; only 108 were found to be culture positive. Sensitivity of isolates to chloroquine was done using Mark III WHO sensitivity plates. The prevalence of malaria infection was found 9.54% in 2010. There were schizont formation at 8?pmol/liter or more of chloroquine concentration in 26 isolates. The emergence of chloroquine (CQ) resistance pattern in Aligarh isolates increases. Antimalarial agents should be used with caution; monotherapies should be avoided. 1. Introduction Chloroquine has for decades been the primary chemotherapeutic means of malaria treatment and control. This safe and inexpensive 4-aminoquinoline compound accumulates inside the digestive vacuole of the infected red blood cell. Chloroquine resistance (CQR) was first reported in Southeast Asia and South America and has now spread to the vast majority of malaria-endemic countries [1]. Antimalarial drug resistance is a major public health problem which hinders the control of malaria. In India resistance of Plasmodium falciparum to chloroquine was first reported in the year 1973 from Diphu of the Karbi Anglong district in Assam state. Various in vitro sensitivity test systems have been developed and applied to sensitivity monitoring of P. falciparum in endemic areas. The most commonly used methods are in vitro tests based on the measurement of the effect of drugs on the growth and development of malaria parasites, that is, schizont maturation or growth inhibition [2, 3], incorporation of radiolabeled precursors [4], enzymatic activity of parasite lactate dehydrogenase (pLDH) [5], or histidine-rich protein II (HRP II) [6]. The in vitro sensitivity test based on the standard micro-technique recommended by the World Health Organization [2] using the schizont maturation inhibition test has been applied successfully in most of the highly multi-drug-resistant

References

[1]  R. G. Ridley, “Medical need, scientific opportunity and the drive for antimalarial drugs,” Nature, vol. 415, no. 6872, pp. 686–693, 2002.
[2]  K. H. Rieckmann, G. H. Campbell, L. J. Sax, and J. E. Mrema, “Drug sensitivity of Plasmodium falciparum. An in-vitro microtechnique.,” Lancet, vol. 1, no. 8054, pp. 22–23, 1978.
[3]  World Health Organization, In Vitro Microtest (MARK II) for the Assessment of the Response of Plasmodium Falciparum to Chloroquine, Mefloquine, Quinine, Sulfadoxine/Pyrimentamine and Amodiaquine, World Health Organization, Geneva, Switzerland, 1990.
[4]  R. E. Desjardins, C. J. Canfield, J. D. Haynes, and J. D. Chulay, “Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique,” Antimicrobial Agents and Chemotherapy, vol. 16, no. 6, pp. 710–718, 1979.
[5]  M. T. Makler and D. J. Hinrichs, “Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia,” American Journal of Tropical Medicine and Hygiene, vol. 48, no. 2, pp. 205–210, 1993.
[6]  H. Noedl, W. H. Wernsdorfer, R. S. Miller, and C. Wongsrichanalai, “Histidine-rich protein II: a novel approach to malaria drug sensitivity testing,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 6, pp. 1658–1664, 2002.
[7]  W. Trager and J. B. Jensen, “Human malaria parasites in continuous culture,” Science, vol. 193, no. 4254, pp. 673–675, 1976.
[8]  J. D. Haynes, C. L. Diggs, F. A. Hines, and R. E. Desjardins, “Culture of human malaria parasites Plasmodium falciparum,” Nature, vol. 263, pp. 767–769, 1976.
[9]  P. J. Guerin, P. Olliaro, F. Nosten et al., “Malaria: Current status of control, diagnosis, treatment, and a proposed agenda for research and development,” Lancet Infectious Diseases, vol. 2, no. 9, pp. 564–573, 2002.
[10]  A. Ahmed, D. Bararia, S. Vinayak, et al., “Plasmodium falciparum, Hyde JE. Drug-resistant malaria,” Trends Parasitol, vol. 21, pp. 494–483, 2005.
[11]  N. K. Shah, G. P. S. Dhillon, A. P. Dash, U. Arora, S. R. Meshnick, and N. Valecha, “Antimalarial drug resistance of Plasmodium falciparum in India: changes over time and space,” The Lancet Infectious Diseases, vol. 11, no. 1, pp. 57–64, 2011.
[12]  R. N. Prasad, H. Prasad, K. J. Virk, and V. P. Sharma, “Application of a simplified in-vivo test system for determining chloroquine resistance in Plasmodium falciparum,” Bulletin of the World Health Organization, vol. 68, no. 6, pp. 755–758, 1990.
[13]  V. K. Dua, P. K. Kar, S. Kumar, and V. P. Sharma, “In-vivo and in-vitro sensitivity of Plasmodium falciparum to chloroquine at Indian Oil Corporation, Mathura (U.P.),” Indian Journal of Malariology, vol. 30, no. 1, pp. 29–35, 1993.
[14]  H. Al-Shamahy, A. H. Al-Harazy, N. S. Harmal, and A. M. Al-Kabsi, “The prevalence and degree of resistance of Plasmodium falciparum to first-line antimalarial drugs: an in vitro study from a malaria endemic region in Yemen,” Annals of Saudi Medicine, vol. 27, no. 6, pp. 432–436, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133