全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

DOI: 10.4061/2011/764845

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal. 1. Introduction Over 50 million women who live in areas of high malaria transmission become pregnant every year, and thousands of these women die [1]. Women in their first and second pregnancies are at particular risk of infection with Plasmodium falciparum, which is a major risk factor for maternal and foetal mortality and is implicated in 75,000–200,000 infant deaths per annum [2, 3]. Selective accumulation of parasites in the placental space results in maternal anaemia [4–6] and infant low birth weight (LBW) [7–13] through preterm delivery (PTD) [12, 13] and intrauterine growth restriction (IUGR) [7, 10, 12, 13]. Malaria demands up to 5% of the gross domestic product in sub-Saharan Africa [14]. Pregnancy-associated malaria (PAM) infection is one example of a severe malaria syndrome, mediated by the surface expression of variant surface antigens (VSAs) of P. falciparum parasitised red blood cells (pRBC) that allow adherence to vascular endothelium. In non-pregnant individuals, VSAs adhere to the ubiquitous endothelial surface proteins intercellular adhesion molecule-1 (ICAM-1) and CD36 or to other pRBC or form rosettes around non-infected RBC. Under high transmission settings with favourable breeding sites for the vector Anopheles mosquito, adults acquire natural

References

[1]  WHO, A Strategic Framework for Malaria Prevention and Control during Pregnancy in the African Region, World Health Organization, Geneva, Switzerland, 2004.
[2]  R. W. Steketee, J. J. Wirima, P. B. Bloland et al., “Impairment of a pregnant woman's acquired ability to limit Plasmodium falciparum by infection with human immunodeficiency virus type-1,” The American Journal of Tropical Medicine and Hygiene, vol. 55, no. 1, supplement, pp. 42–49, 1996.
[3]  R. W. Steketee, B. L. Nahlen, M. E. Parise, and C. Menendez, “The burden of malaria in pregnancy in malaria-endemic areas,” The American Journal of Tropical Medicine and Hygiene, vol. 64, no. 1-2, supplement, pp. 28–35, 2001.
[4]  H. M. Gilles, J. B. Lawson, M. Sibelas, A. Voller, and N. Allan, “Malaria, anaemia and pregnancy,” Annals of Tropical Medicine and Parasitology, vol. 63, no. 2, pp. 245–263, 1969.
[5]  C. E. Shulman, W. J. Graham, H. Jilo et al., “Malaria is an important cause of anaemia in primigravidae: evidence from a district hospital in coastal Kenya,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 90, no. 5, pp. 535–539, 1996.
[6]  M. Cot, J. Y. Le Hesran, P. Miailhes et al., “Effect of chloroquine prophylaxis during pregnancy on maternal haematocrit,” Annals of Tropical Medicine and Parasitology, vol. 92, no. 1, pp. 37–43, 1998.
[7]  I. A. McGregor, M. E. Wilson, and W. Z. Billewicz, “Malaria infection of the placenta in The Gambia, West Africa; its incidence and relationship to stillbirth, birthweight and placental weight,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 77, no. 2, pp. 232–244, 1983.
[8]  B. J. Brabin, “An analysis of malaria in pregnancy in Africa,” Bulletin of the World Health Organization, vol. 61, no. 6, pp. 1005–1016, 1983.
[9]  I. A. McGregor, “Epidemiology, malaria and pregnancy,” The American Journal of Tropical Medicine and Hygiene, vol. 33, no. 4, pp. 517–525, 1984.
[10]  B. Brabin, “An assessment of low birthweight risk in primiparae as an indicator of malaria control in pregnancy,” International Journal of Epidemiology, vol. 20, no. 1, pp. 276–283, 1991.
[11]  F. Nosten, F. ter Kuile, L. Maelankirri, B. Decludt, and N. J. White, “Malaria during pregnancy in an area of unstable endemicity,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 85, no. 4, pp. 424–429, 1991.
[12]  R. W. Steketee, J. J. Wirima, A. W. Hightower, L. Slutsker, D. L. Heymann, and J. G. Breman, “The effect of malaria and malaria prevention in pregnancy on offspring birthweight, prematurity, and intrauterine growth retardation in Rural Malawi,” The American Journal of Tropical Medicine and Hygiene, vol. 55, no. 1, supplement, pp. 33–41, 1996.
[13]  A. D. Sullivan, T. Nyirenda, T. Cullinan et al., “Malaria infection during pregnancy: intrauterine growth retardation and preterm delivery in Malawi,” Journal of Infectious Diseases, vol. 179, no. 6, pp. 1580–1583, 1999.
[14]  WHO, Parasitic Diseases: Malaria. Initiative for Vaccine Research (IVR), 2011, http://www.who.int/vaccine_research/diseases/soa_parasitic/en/index4.html.
[15]  A. Taylor-Robinson, “Immunity to malaria increases during puberty,” Trends in Parasitology, vol. 17, no. 5, p. 213, 2001.
[16]  D. L. Doolan, C. Doba?o, and J. K. Baird, “Acquired immunity to malaria,” Clinical Microbiology Reviews, vol. 22, no. 1, pp. 13–36, 2009.
[17]  E. T. Abrams, H. Brown, S. W. Chensue et al., “Host response to malaria during pregnancy: placental monocyte recruitment is associated with elevated β chemokine expression,” Journal of Immunology, vol. 170, no. 5, pp. 2759–2764, 2003.
[18]  J. Ansell, K. A. Hamilton, M. Pinder, G. E. L. Walraven, and S. W. Lindsay, “Short-range attractiveness of pregnant women to Anopheles gambiae mosquitoes,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 96, no. 2, pp. 113–116, 2002.
[19]  F. Nosten, S. J. Rogerson, J. G. Beeson, R. McGready, T. K. Mutabingwa, and B. Brabin, “Malaria in pregnancy and the endemicity spectrum: what can we learn?” Trends in Parasitology, vol. 20, no. 9, pp. 425–432, 2004.
[20]  P. E. Duffy and R. S. Desowitz, “Pregnancy malaria throughout history: dangerous labors,” in Malaria in Pregnancy: Deadly Parasite, Susceptible Host, P. E. Duffy and M. Fried, Eds., pp. 1–25, Taylor & Francis, London, UK, 2001.
[21]  S. Looareesuwan, R. E. Phillips, N. J. White, et al., “Quinine and severe falciparum malaria in late pregnancy,” The Lancet, vol. 2, no. 8445, pp. 4–7, 1985.
[22]  F. Nosten, R. McGready, and T. Mutabingwa, “Case management of malaria in pregnancy,” The Lancet Infectious Diseases, vol. 7, no. 2, pp. 118–125, 2007.
[23]  M. Recker, M. J. Bouma, P. Bamford, S. Gupta, and A. P. Dobson, “Assessing the burden of pregnancy-associated malaria under changing transmission settings,” Malaria Journal, vol. 8, no. 1, article 245, 2009.
[24]  B. Brabin and S. J. Rogerson, “The epidemiology and outcomes of maternal malaria,” in Malaria in Pregnancy: Deadly Parasite, Susceptible Host, P. E. Duffy and M. Fried, Eds., pp. 27–52, Taylor & Francis, London, UK, 2001.
[25]  R. Megnekou, T. Staalsoe, D. W. Taylor, R. Leke, and L. Hviid, “Effects of pregnancy and intensity of Plasmodium falciparum transmission on immunoglobulin G subclass responses to variant surface antigens,” Infection and Immunity, vol. 73, no. 7, pp. 4112–4118, 2005.
[26]  J. K. Baird, “Host age as a determinant of naturally acquired immunity to Plasmodium falciparum,” Parasitology Today, vol. 11, no. 3, pp. 105–111, 1995.
[27]  S. J. Rogerson, V. Mwapasa, and S. R. Meshnick, “Malaria in pregnancy: linking immunity and pathogenesis to prevention,” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 6, supplement, pp. 14–22, 2007.
[28]  R. M. Chico and D. Chandramohan, “Intermittent preventive treatment of malaria in pregnancy: at the crossroads of public health policy,” Tropical Medicine and International Health, vol. 16, no. 7, pp. 774–785, 2011.
[29]  O. M. Maiga, K. Kayentao, B. T. Traoré et al., “Superiority of 3 over 2 doses of intermittent preventive treatment with sulfadoxine-pyrimethamine for the prevention of malaria during pregnancy in mali: a randomized controlled trial,” Clinical Infectious Diseases, vol. 53, no. 3, pp. 215–223, 2011.
[30]  E. Sevene, R. González, and C. Menéndez, “Current knowledge and challenges of antimalarial drugs for treatment and prevention in pregnancy,” Expert Opinion on Pharmacotherapy, vol. 11, no. 8, pp. 1277–1293, 2010.
[31]  M. R. Ismail, J. Ordi, C. Menendez et al., “Placental pathology in malaria: a histological, immunohistochemical, and quantitative study,” Human Pathology, vol. 31, no. 1, pp. 85–93, 2000.
[32]  A. Muehlenbachs, M. Fried, R. McGready et al., “A novel histological grading scheme for placental malaria applied in areas of high and low malaria transmission,” Journal of Infectious Diseases, vol. 202, no. 10, pp. 1608–1616, 2010.
[33]  B. J. Brabin, C. Romagosa, S. Abdelgalil et al., “The sick placenta—the role of malaria,” Placenta, vol. 25, no. 5, pp. 359–378, 2004.
[34]  R. F.G. Leke, J. D. Bioga, J. Zhou et al., “Longitudinal studies of Plasmodium falciparum malaria in pregnant women living in a rural cameroonian village with high perennial transmission,” The American Journal of Tropical Medicine and Hygiene, vol. 83, no. 5, pp. 996–1004, 2010.
[35]  R. McGready, B. B. Davison, K. Stepniewska et al., “The effects of Plasmodium falciparum and P. vivax infections on placental histopathology in an area of low malaria transmission,” The American Journal of Tropical Medicine and Hygiene, vol. 70, no. 4, pp. 398–407, 2004.
[36]  T. Y. Khong, “Acute atherosis in pregnancies complicated by hypertension, small-for-gestational-age infants, and diabetes mellitus,” Archives of Pathology and Laboratory Medicine, vol. 115, no. 7, pp. 722–725, 1991.
[37]  W. J. Hamilton and J. D. Boyd, “Development of the human placenta in the first three months of gestation,” Journal of Anatomy, vol. 94, no. 7, pp. 297–328, 1960.
[38]  H. Hirano, Y. Imai, and H. Ito, “Spiral artery of placenta: development and pathology-immunohistochemical, microscopical, and electron-microscopic study,” Kobe Journal of Medical Sciences, vol. 48, no. 1-2, pp. 13–23, 2002.
[39]  L. Kalilani, I. Mofolo, M. Chaponda, S. J. Rogerson, and S. R. Meshnick, “The effect of timing and frequency of Plasmodium falciparum infection during pregnancy on the risk of low birth weight and maternal anemia,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 104, no. 6, pp. 416–422, 2010.
[40]  M. Desai, F. O. ter Kuile, F. Nosten et al., “Epidemiology and burden of malaria in pregnancy,” The Lancet Infectious Diseases, vol. 7, no. 2, pp. 93–104, 2007.
[41]  G. Cottrell, J. Y. Mary, D. Barro, and M. Cot, “The importance of the period of malarial infection during pregnancy on birth weight in tropical Africa,” The American Journal of Tropical Medicine and Hygiene, vol. 76, no. 5, pp. 849–854, 2007.
[42]  M. J. Rijken, J. A. Rijken, A. T. Papageorghiou et al., “Malaria in pregnancy: the difficulties in measuring birthweight,” British Journal of Obstetrics and Gynaecology, vol. 118, no. 6, pp. 671–678, 2011.
[43]  S. H. Landis, V. Lokomba, C. V. Ananth et al., “Impact of maternal malaria and under-nutrition on intrauterine growth restriction: a prospective ultrasound study in Democratic Republic of Congo,” Epidemiology and Infection, vol. 137, no. 2, pp. 294–304, 2009.
[44]  J. G. Beeson and G. V. Brown, “Pathogenesis of Plasmodium falciparum malaria: the roles of parasite adhesion and antigenic variation,” Cellular and Molecular Life Sciences, vol. 59, no. 2, pp. 258–271, 2002.
[45]  J. Bottero, V. Briand, C. Agbowai, J. Doritchamou, A. Massougbodji, and M. Cot, “Short report: spontaneous post-partum clearance of Plasmodium falciparum parasitemia in pregnant women, Benin,” The American Journal of Tropical Medicine and Hygiene, vol. 84, no. 2, pp. 267–269, 2011.
[46]  A. Muthusamy, R. N. Achur, M. Valiyaveettil et al., “Chondroitin sulfate proteoglycan but not hyaluronic acid is the receptor for the adherence of Plasmodium falciparum-infected erythrocytes in human placenta, and infected red blood cell adherence up-regulates the receptor expression,” The American Journal of Pathology, vol. 170, no. 6, pp. 1989–2000, 2007.
[47]  J. G. Beeson, S. J. Rogerson, B. M. Cooke et al., “Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria,” Nature Medicine, vol. 6, no. 1, pp. 86–90, 2000.
[48]  K. Flick, C. Scholander, Q. Chen et al., “Role of non-immune IgG bound to PfEMP1 in placental malaria,” Science, vol. 293, no. 5537, pp. 2098–2100, 2001.
[49]  N. Rasti, F. Namusoke, A. Chêne et al., “Non-immune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13795–13800, 2006.
[50]  P. Khunrae and M. K. Higgins, “Structural insights into chondroitin sulfate binding in pregnancy-associated malaria,” Biochemical Society Transactions, vol. 38, no. 5, pp. 1337–1341, 2010.
[51]  M. Fried and P. E. Duffy, “Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta,” Science, vol. 272, no. 5267, pp. 1502–1504, 1996.
[52]  J. G. Beeson, G. V. Brown, M. E. Molyneux, C. Mhango, F. Dzinjalamala, and S. J. Rogerson, “Plasmodium falciparum isolates from infected pregnant women and children are associated with distinct adhesive and antigenic properties,” Journal of Infectious Diseases, vol. 180, no. 2, pp. 464–472, 1999.
[53]  J. G. Beeson and G. V. Brown, “Plasmodium falciparum-infected erythrocytes demonstrate dual specificity for adhesion to hyaluronic acid and chondroitin sulfate A and have distinct adhesive properties,” Journal of Infectious Diseases, vol. 189, no. 2, pp. 169–179, 2004.
[54]  J. G. Beeson, S. J. Rogerson, and G. V. Brown, “Evaluating specific adhesion of Plasmodium falciparum-infected erythrocytes to immobilised hyaluronic acid with comparison to binding of mammalian cells,” International Journal for Parasitology, vol. 32, no. 10, pp. 1245–1252, 2002.
[55]  S. J. Rogerson, S. C. Chaiyaroj, K. Ng, J. C. Reeder, and G. V. Brown, “Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes,” Journal of Experimental Medicine, vol. 182, no. 1, pp. 15–20, 1995.
[56]  R. Noviyanti, G. V. Brown, M. E. Wickham, M. F. Duffy, A. F. Cowman, and J. C. Reeder, “Multiple var gene transcripts are expressed in Plasmodium falciparum infected erythrocytes selected for adhesion,” Molecular and Biochemical Parasitology, vol. 114, no. 2, pp. 227–237, 2001.
[57]  L. Joergensen, D. C. Bengtsson, A. Bengtsson et al., “Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1,” PLoS Pathogens, vol. 6, no. 9, Article ID e01083, 2010.
[58]  A. Salanti, T. Staalsoe, T. Lavstsen et al., “Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria,” Molecular Microbiology, vol. 49, no. 1, pp. 179–191, 2003.
[59]  M. Dahlb?ck, T. Lavstsen, A. Salanti et al., “Changes in var gene mRNA levels during erythrocytic development in two phenotypically distinct Plasmodium falciparum parasites,” Malaria Journal, vol. 6, no. 1, article 78, 2007.
[60]  E. Schieck, J. M. Pfahler, C. P. Sanchez, and M. Lanzer, “Nuclear run-on analysis of var gene expression in Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 153, no. 2, pp. 207–212, 2007.
[61]  R. Udomsangpetch, B. Wahlin, J. Carlson et al., “Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes,” Journal of Experimental Medicine, vol. 169, no. 5, pp. 1835–1840, 1989.
[62]  M. Fried, F. Nosten, A. Brockman, B. J. Brabin, and P. E. Duffy, “Maternal antibodies block malaria,” Nature, vol. 395, no. 6705, pp. 851–850, 1998.
[63]  J. G. Beeson, E. J. Mann, S. R. Elliott et al., “Antibodies to variant surface antigens of Plasmodium falciparum-infected erythrocytes and adhesion inhibitory antibodies are associated with placental malaria and have overlapping and distinct targets,” Journal of Infectious Diseases, vol. 189, no. 3, pp. 540–551, 2004.
[64]  B. Maubert, N. Fievet, G. Tami, M. Cot, C. Boudin, and P. Deloron, “Development of antibodies against chondroitin sulfate A-adherent Plasmodium falciparum in pregnant women,” Infection and Immunity, vol. 67, no. 10, pp. 5367–5371, 1999.
[65]  H. H. Salem, I. Maruyama, H. Ishii, and P. W. Majerus, “Isolation and characterization of thrombomodulin from human placenta,” Journal of Biological Chemistry, vol. 259, no. 19, pp. 12246–12251, 1984.
[66]  L. Schaefer and R. M. Schaefer, “Proteoglycans: from structural compounds to signaling molecules,” Cell and Tissue Research, vol. 339, no. 1, pp. 237–246, 2010.
[67]  N. W. Lucchi, R. Koopman, D. S. Peterson, and J. M. Moore, “Plasmodium falciparum-infected red blood cells selected for binding to cultured syncytiotrophoblast bind to chondroitin sulfate A and induce tyrosine phosphorylation in the syncytiotrophoblast,” Placenta, vol. 27, no. 4-5, pp. 384–394, 2006.
[68]  N. W. Lucchi, D. S. Peterson, and J. M. Moore, “Immunologic activation of human syncytiotrophoblast by Plasmodium falciparum,” Malaria Journal, vol. 7, no. 1, article 42, 2008.
[69]  M. Dahlb?ck, M. A. Nielsen, and A. Salanti, “Can any lessons be learned from the ambiguous glycan binding of PfEMP1 domains?” Trends in Parasitology, vol. 26, no. 5, pp. 230–235, 2010.
[70]  D. Matejevic, H. Neudeck, R. Graf, T. Müller, and J. Dietl, “Localization of hyaluronan with a hyaluronan-specific hyaluronic acid binding protein in the placenta in pre-eclampsia,” Gynecologic and Obstetric Investigation, vol. 52, no. 4, pp. 257–259, 2001.
[71]  M. Hommel, S. R. Elliott, V. Soma et al., “Evaluation of the antigenic diversity of placenta-binding Plasmodium falciparum variants and the antibody repertoire among pregnant women,” Infection and Immunity, vol. 78, no. 5, pp. 1963–1978, 2010.
[72]  M. F. Duffy, T. J. Byrne, S. R. Elliott et al., “Broad analysis reveals a consistent pattern of var gene transcription in Plasmodium falciparum repeatedly selected for a defined adhesion phenotype,” Molecular Microbiology, vol. 56, no. 3, pp. 774–788, 2005.
[73]  D. I. Baruch, J. A. Gormley, C. Ma, R. J. Howard, and B. L. Pasloske, “Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 8, pp. 3497–3502, 1996.
[74]  S. M. Kraemer and J. D. Smith, “A family affair: var genes, PfEMP1 binding, and malaria disease,” Current Opinion in Microbiology, vol. 9, no. 4, pp. 374–380, 2006.
[75]  J. D. Smith, S. Kyes, A. G. Craig et al., “Analysis of adhesive domains from the A4VAR Plasmodium falciparum erythrocyte membrane protein-1 identifies a CD36 binding domain,” Molecular and Biochemical Parasitology, vol. 97, no. 1-2, pp. 133–148, 1998.
[76]  J. D. Smith, A. G. Craig, N. Kriek et al., “Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1766–1771, 2000.
[77]  S. J. Rogerson, L. Hviid, P. E. Duffy, R. F. Leke, and D. W. Taylor, “Malaria in pregnancy: pathogenesis and immunity,” The Lancet Infectious Diseases, vol. 7, no. 2, pp. 105–117, 2007.
[78]  N. Singh, M. M. Shukla, R. Srivastava, and V. P. Sharma, “Prevalence of malaria among pregnant and non-pregnant women of district Jabalpur, Madhya Pradesh,” Indian Journal of Malariology, vol. 32, no. 1, pp. 6–13, 1995.
[79]  F. Nosten, R. McGready, J. A. Simpson et al., “Effects of Plasmodium vivax malaria in pregnancy,” The Lancet, vol. 354, no. 9178, pp. 546–549, 1999.
[80]  N. Diagne, C. Rogier, B. Cisse, and J. F. Trape, “Incidence of clinical malaria in pregnant women exposed to intense perennial transmission,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 91, no. 2, pp. 166–170, 1997.
[81]  P. E. Duffy and M. Fried, “Malaria in the pregnant woman,” Current Topics in Microbiology and Immunology, vol. 295, no. 1, pp. 169–200, 2005.
[82]  C. Luxemburger, F. Ricci, F. Nosten, D. Raimond, S. Bathet, and N. J. White, “The epidemiology of severe malaria in an area of low transmission in Thailand,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 91, no. 3, pp. 256–262, 1997.
[83]  N. Diagne, C. Rogier, C. S. Sokhna et al., “Increased susceptibility to malaria during the early post-partum period,” The New England Journal of Medicine, vol. 343, no. 9, pp. 598–603, 2000.
[84]  N. G. Tuikue Ndam, A. Salanti, G. Bertin et al., “High level of var2csa transcription by Plasmodium falciparum isolated from the placenta,” Journal of Infectious Diseases, vol. 192, no. 2, pp. 331–335, 2005.
[85]  S. M. Kraemer and J. D. Smith, “Evidence for the importance of genetic structuring to the structural and functional specialization of the Plasmodium falciparum var gene family,” Molecular Microbiology, vol. 50, no. 5, pp. 1527–1538, 2003.
[86]  N. K. Viebig, B. Gamain, C. Scheidig et al., “A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A,” The EMBO Reports, vol. 6, no. 8, pp. 775–781, 2005.
[87]  M. F. Duffy, A. G. Maier, T. J. Byrne et al., “VAR2CSA is the principal ligand for chondroitin sulfate A in two allogeneic isolates of Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 148, no. 2, pp. 117–124, 2006.
[88]  A. Salanti, M. Dahlb?ck, L. Turner et al., “Evidence for the involvement of VAR2CSA in pregnancy-associated malaria,” Journal of Experimental Medicine, vol. 200, no. 9, pp. 1197–1203, 2004.
[89]  B. Gamain, A. R. Trimnell, C. Scheidig, A. Schert, L. H. Miller, and J. D. Smith, “Identification of multiple chondroitin sulfate A (CSA)-binding domains in the var2csa gene transcribed in CSA-binding parasites,” Journal of Infectious Diseases, vol. 191, no. 6, pp. 1010–1013, 2005.
[90]  N. K. Viebig, M. C. Nunes, A. Scherf, and B. Gamain, “The human placental derived BeWo cell line: a useful model for selecting Plasmodium falciparum CSA-binding parasites,” Experimental Parasitology, vol. 112, no. 2, pp. 121–125, 2006.
[91]  S. E. Cox, T. Staalsoe, P. Arthur et al., “Rapid acquisition of isolate-specific antibodies to chondroitin sulfate A-adherent Plasmodium falciparum isolates in Ghanaian primigravidae,” Infection and Immunity, vol. 73, no. 5, pp. 2841–2847, 2005.
[92]  L. Barfod, M. A. Nielsen, L. Turner et al., “Baculovirus-expressed constructs induce immunoglobulin G that recognizes VAR2CSA on Plasmodium falciparum-infected erythrocytes,” Infection and Immunity, vol. 74, no. 7, pp. 4357–4360, 2006.
[93]  L. Hviid and A. Salanti, “VAR2CSA and protective immunity against pregnancy-associated Plasmodium falciparum malaria,” Parasitology, vol. 134, no. 13, pp. 1871–1876, 2007.
[94]  T. Staalsoe, C. E. Shulman, J. N. Bulmer, K. Kawuondo, K. Marsh, and L. Hviid, “Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria,” The Lancet, vol. 363, no. 9405, pp. 283–289, 2004.
[95]  T. Staalsoe, R. Megnekou, N. Fievét et al., “Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of Plasmodium falciparum-infected erythrocytes that protect against placental parasitemia,” Journal of Infectious Diseases, vol. 184, no. 5, pp. 618–626, 2001.
[96]  C. H. Ricke, T. Staalsoe, K. Koram et al., “Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A,” Journal of Immunology, vol. 165, no. 6, pp. 3309–3316, 2000.
[97]  M. Recker, C. O. Buckee, A. Serazin et al., “Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern,” PLoS Pathogens, vol. 7, no. 3, Article ID e1001306, 2011.
[98]  E. H. Aitken, B. Mbewe, M. Luntamo et al., “Antibodies to chondroitin sulfate A-binding infected erythrocytes: dynamics and protection during pregnancy in women receiving intermittent preventive treatment,” Journal of Infectious Diseases, vol. 201, no. 9, pp. 1316–1325, 2010.
[99]  I. O'Neil-Dunne, R. N. Achur, S. T. Agbor-Enoh et al., “Gravidity-dependent production of antibodies that inhibit binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate proteoglycan during pregnancy,” Infection and Immunity, vol. 69, no. 12, pp. 7487–7492, 2001.
[100]  A. H. Achtman, P. C. Bull, R. Stephens, and J. Langhorne, “Longevity of the immune response and memory to blood-stage malaria infection,” Current Topics in Microbiology and Immunology, vol. 297, no. 1, pp. 71–102, 2005.
[101]  S. R. Elliott, A. K. Brennan, J. G. Beeson et al., “Placental malaria induces variant-specific antibodies of the cytophilic subtypes immunoglobulin G1 (IgG1) and IgG3 that correlate with adhesion inhibitory activity,” Infection and Immunity, vol. 73, no. 9, pp. 5903–5907, 2005.
[102]  J. Guitard, P. Andersen, C. Ermont et al., “Plasmodium falciparum population dynamics in a cohort of pregnant women in Senegal,” Malaria Journal, vol. 9, no. 6, article 165, 2010.
[103]  A. Salanti, M. Resende, S. B. Ditlev et al., “Several domains from VAR2CSA can induce Plasmodium falciparum adhesion-blocking antibodies,” Malaria Journal, vol. 9, no. 1, article 11, 2010.
[104]  P. Khunrae, M. Dahlb?ck, M. A. Nielsen et al., “Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies,” Journal of Molecular Biology, vol. 397, no. 3, pp. 826–834, 2010.
[105]  P. E. Duffy and M. Fried, “Antibodies that inhibit Plasmodium falciparum adhesion to chondroitin sulfate A are associated with increased birth weight and the gestational age of newborns,” Infection and Immunity, vol. 71, no. 11, pp. 6620–6623, 2003.
[106]  G. Feng, E. Aitken, F. Yosaatmadja et al., “Antibodies to variant surface antigens of Plasmodium falciparum-infected erythrocytes are associated with protection from treatment failure and the development of anemia in pregnancy,” Journal of Infectious Diseases, vol. 200, no. 2, pp. 299–306, 2009.
[107]  P. D. McElroy, F. O. ter Kuile, A. W. Hightower et al., “All-cause mortality among young children in western Kenya. VI: the Asembo Bay Cohort Project,” The American Journal of Tropical Medicine and Hygiene, vol. 64, no. 1-2, supplement, pp. 18–27, 2001.
[108]  C. R.F. Marinho, R. Neres, S. Epiphanio, L. A. Gon?alves, M. B. Catarino, and C. Penha-Gon?alves, “Recrudescent Plasmodium berghei from pregnant mice displays enhanced binding to the placenta and induces protection in multigravida,” PLoS ONE, vol. 4, no. 5, Article ID e5630, 2009.
[109]  B. F. Kalanda, F. H. Verhoeff, L. Chimsuku, G. Harper, and B. J. Brabin, “Adverse birth outcomes in a malarious area,” Epidemiology and Infection, vol. 134, no. 3, pp. 659–666, 2006.
[110]  A. Walker-Abbey, R. R. T. Djokam, A. Eno et al., “Malaria in pregnant Cameroonian women: the effect of age and gravidity on submicroscopic and mixed-species infections and multiple parasite genotypes,” The American Journal of Tropical Medicine and Hygiene, vol. 72, no. 3, pp. 229–235, 2005.
[111]  D. Schleiermacher, C. Rogier, A. Spiegel, A. Tall, J. F. Trape, and O. Mercereau-Puijalon, “Increased multiplicity of Plasmodium falciparum infections and skewed distribution of individual MSP1 and MSP2 alleles during pregnancy in Ndiop, a senegalese village with seasonal, mesoendemic malaria,” The American Journal of Tropical Medicine and Hygiene, vol. 64, no. 5-6, pp. 303–309, 2001.
[112]  S. I. Hay, C. A. Guerra, P. W. Gething et al., “A world malaria map: Plasmodium falciparum endemicity in 2007,” PLoS Medicine, vol. 6, no. 3, Article ID e1000048, 2009.
[113]  T. W. Mwangi, A. Ross, R. W. Snow, and K. Marsh, “Case definitions of clinical malaria under different transmission conditions in Kilifi District, Kenya,” Journal of Infectious Diseases, vol. 191, no. 11, pp. 1932–1939, 2005.
[114]  M. Giobbia, E. Tonon, A. Zanatta, L. Cesaris, Z. Bisoffi, and A. Vaglia, “Late recrudescence of Plasmodium falciparum malaria in a pregnant woman: a case report,” International Journal of Infectious Diseases, vol. 9, no. 4, pp. 234–235, 2005.
[115]  L. Hviid and T. Staalsoe, “Late recrudescence of Plasmodium falciparum malaria in pregnancy,” International Journal of Infectious Diseases, vol. 10, no. 5, p. 412, 2006.
[116]  L. Hviid, C. R. F. Marinho, T. Staalsoe, and C. Penha-Gon?alves, “Of mice and women: rodent models of placental malaria,” Trends in Parasitology, vol. 26, no. 8, pp. 412–419, 2010.
[117]  T. Staalsoe, C. E. Shulman, E. K. Dorman, K. Kawuondo, K. Marsh, and L. Hviid, “Intermittent preventive sulfadoxine-pyrimethamine treatment of primigravidae reduces levels of plasma immunoglobulin G, which protects against pregnancy-associated Plasmodium falciparum malaria,” Infection and Immunity, vol. 72, no. 9, pp. 5027–5030, 2004.
[118]  S. J. Rogerson, R. S. Wijesinghe, and S. R. Meshnick, “Host immunity as a determinant of treatment outcome in Plasmodium falciparum malaria,” The Lancet Infectious Diseases, vol. 10, no. 1, pp. 51–59, 2010.
[119]  J. G. Beeson, E. J. Mann, T. J. Byrne et al., “Antigenic differences and conservation among placental Plasmodium falciparum-infected erythrocytes and acquisition of variant-specific and cross-reactive antibodies,” Journal of Infectious Diseases, vol. 193, no. 5, pp. 721–730, 2006.
[120]  M. Dahlb?ck, T. S. Rask, P. H. Andersen et al., “Epitope mapping and topographic analysis of VAR2CSA DBL3X involved in P. falciparum placental sequestration,” PLoS Pathogens, vol. 2, no. 11, article e124, 2006.
[121]  L. Barfod, N. L. Bernasconi, M. Dahlb?ck et al., “Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA,” Molecular Microbiology, vol. 63, no. 2, pp. 335–347, 2007.
[122]  M.-P. Piccinni, “T cell tolerance towards the fetal allograft,” Journal of Reproductive Immunology, vol. 85, no. 1, pp. 71–75, 2010.
[123]  A. A. Ashkar, G. P. Black, Q. Wei et al., “Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy,” Journal of Immunology, vol. 171, no. 6, pp. 2937–2944, 2003.
[124]  J. M. Argi?s, N. Carbo, and F. J. Lpez-Soriano, “TNF and pregnancy: the paradigm of a complex interaction,” Cytokine and Growth Factor Reviews, vol. 8, no. 3, pp. 181–188, 1997.
[125]  H. Lin, T. R. Mosmann, L. Guilbert, S. Tuntipopipat, and T. G. Wegmann, “Synthesis of T helper 2-type cytokines at the maternal-fetal interface,” Journal of Immunology, vol. 151, no. 9, pp. 4562–4573, 1993.
[126]  M. P. Piccinni, C. Scaletti, E. Maggi, and S. Romagnani, “Role of hormone-controlled Th1- and Th2-type cytokines in successful pregnancy,” Journal of Neuroimmunology, vol. 109, no. 1, pp. 30–33, 2000.
[127]  R. G. Lea, K. C. Flanders, C. B. Harley, J. Manuel, D. Banwatt, and D. A. Clark, “Release of a transforming growth factor (TGF)-β2-related suppressor factor from postimplantation murine decidual tissue can be correlated with the detection of a subpopulation of cells containing RNA for TGF-β2,” Journal of Immunology, vol. 148, no. 3, pp. 778–787, 1992.
[128]  T. G. Wegmann, H. Lin, L. Guilbert, and T. R. Mosmann, “Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon?” Immunology Today, vol. 14, no. 7, pp. 353–356, 1993.
[129]  O. Thellin, B. Coumans, W. Zorzi, A. Igout, and E. Heinen, “Tolerance to the foeto-placental 'graft': ten ways to support a child for nine months,” Current Opinion in Immunology, vol. 12, no. 6, pp. 731–737, 2000.
[130]  B. F. Barrier, A. R. Gargiulo, and D. J. Schust, “Reproductive immunology and its disorders,” in Yen and Jaffe's Reproductive Endocrinology. Physiology, Pathophysiology and Clinical Management, J. F. Strauss and R. L. Barbieri, Eds., pp. 299–309, Saunders Elsevier, Philadelphia, Pa, USA, 2009.
[131]  A. W. Taylor-Robinson, “Regulation of immunity to Plasmodium: implications from mouse models for blood stage malaria vaccine design,” Experimental Parasitology, vol. 126, no. 3, pp. 406–414, 2010.
[132]  J. G. Beeson, F. H. A. Osier, and C. R. Engwerda, “Recent insights into humoral and cellular immune responses against malaria,” Trends in Parasitology, vol. 24, no. 12, pp. 578–584, 2008.
[133]  A. L. Suguitan Jr., R. G. F. Leke, G. Fouda et al., “Changes in the levels of chemokines and cytokines in the placentas of women with Plasmodium falciparum malaria,” Journal of Infectious Diseases, vol. 188, no. 7, pp. 1074–1082, 2003.
[134]  N. Fievet, M. Moussa, G. Tami et al., “Plasmodium falciparum induces a Th1/Th2 disequilibrium, favoring the Th1-type pathway, in the human placenta,” Journal of Infectious Diseases, vol. 183, no. 10, pp. 1530–1534, 2001.
[135]  S. J. Rogerson, E. Pollina, A. Getachew, E. Tadesse, V. M. Lema, and M. E. Molyneux, “Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes,” The American Journal of Tropical Medicine and Hygiene, vol. 68, no. 1, pp. 115–119, 2003.
[136]  A. W. Taylor-Robinson and E. C. Smith, “A dichotomous role for nitric oxide in protection against blood stage malaria infection,” Immunology Letters, vol. 67, no. 1, pp. 1–9, 1999.
[137]  M. P. Piccinni, L. Beloni, C. Livi, E. Maggi, G. Scarselli, and S. Romagnani, “Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions,” Nature Medicine, vol. 4, no. 9, pp. 1020–1024, 1998.
[138]  J. Y. H. Kwak-Kim, A. Gilman-Sachs, and C. E. Kim, “T helper 1 and 2 immune responses in relationship to pregnancy, nonpregnancy, recurrent spontaneous abortions and infertility of repeated implantation failures,” Chemical Immunology and Allergy, vol. 88, no. 1, pp. 64–79, 2005.
[139]  M. Fried, R. O. Muga, A. O. Misore, and P. E. Duffy, “Malaria elicits type 1 cytokines in the human placenta: IFN-γ and TNF-α associated with pregnancy outcomes,” Journal of Immunology, vol. 160, no. 5, pp. 2523–2530, 1998.
[140]  A. M. Moormann, A. D. Sullivan, R. A. Rochford et al., “Malaria and pregnancy: placental cytokine expression and its relationship to intrauterine growth retardation,” Journal of Infectious Diseases, vol. 180, no. 6, pp. 1987–1993, 1999.
[141]  B. Maubert, L. J. Guilbert, and P. Deloron, “Cytoadherence of Plasmodium falciparum to intercellular adhesion molecule 1 and chondroitin-4-sulfate expressed by the syncytiotrophoblast in the human placenta,” Infection and Immunity, vol. 65, no. 4, pp. 1251–1257, 1997.
[142]  S. J. Renaud, R. Sullivan, and C. H. Graham, “Tumour necrosis factor alpha stimulates the production of monocyte chemoattractants by extravillous trophoblast cells via differential activation of MAPK pathways,” Placenta, vol. 30, no. 4, pp. 313–319, 2009.
[143]  F. Monzón-Bordonaba, F. Vadillo-Ortega, and R. F. Feinberg, “Modulation of trophoblast function by tumor necrosis factor-α: a role in pregnancy establishment and maintenance?” American Journal of Obstetrics and Gynecology, vol. 187, no. 6, pp. 1574–1580, 2002.
[144]  F. Arechavaleta-Velasco, J. Mayon-Gonzalez, M. Gonzalez-Jimenez, C. Hernandez-Guerrero, and F. Vadillo-Ortega, “Association of type II apoptosis and 92-kDa type IV collagenase expression in human amniochorion in prematurely ruptured membranes with tumor necrosis factor receptor-1 expression,” Journal of the Society for Gynecologic Investigation, vol. 9, no. 2, pp. 60–67, 2002.
[145]  S. J. Rogerson, H. C. Brown, E. Pollina et al., “Placental tumor necrosis factor alpha but not gamma interferon is associated with placental malaria and low birth weight in Malawian women,” Infection and Immunity, vol. 71, no. 1, pp. 267–270, 2003.
[146]  J. M. Moore, B. L. Nahlen, A. Misore, A. A. Lal, and V. Udhayakumar, “Immunity to placental malaria. I. Elevated production of interferon-γ by placental blood mononuclear cells is associated with protection in an area with high transmission of malaria,” Journal of Infectious Diseases, vol. 179, no. 5, pp. 1218–1225, 1999.
[147]  E. R. Kabyemela, A. Muehlenbachs, M. Fried, J. D. Kurtis, T. K. Mutabingwa, and P. E. Duffy, “Maternal peripheral blood level of IL-10 as a marker for inflammatory placental malaria,” Malaria Journal, vol. 7, no. 1, article 26, 2008.
[148]  B. B. Davison, M. B. Kaack, L. B. Rogers et al., “The role of soluble tumor necrosis factor receptor types I and II and tumor necrosis factor-α in malaria during pregnancy,” Journal of Infectious Diseases, vol. 194, no. 1, pp. 123–132, 2006.
[149]  O. P. G. Nmorsi, C. Isaac, B. A. Ohaneme, and H. A. K. Obiazi, “Pro-inflammatory cytokines profiles in Nigerian pregnant women infected with Plasmodium falciparum malaria,” Asian Pacific Journal of Tropical Medicine, vol. 3, no. 9, pp. 731–733, 2010.
[150]  S. Chaisavaneeyakorn, N. Lucchi, C. Abramowsky et al., “Immunohistological characterization of macrophage migration inhibitory factor expression in Plasmodium falciparum-infected placentas,” Infection and Immunity, vol. 73, no. 6, pp. 3287–3293, 2005.
[151]  S. Chaisavaneeyakorn, J. M. Moore, C. Othoro et al., “Immunity to placental malaria. IV. Placental malaria is associated with up-regulation of macrophage migration inhibitory factor in intervillous blood,” Journal of Infectious Diseases, vol. 186, no. 9, pp. 1371–1375, 2002.
[152]  S. C. Chaiyaroj, A. S. M. Rutta, K. Muenthaisong, P. Watkins, M. Na Ubol, and S. Looareesuwan, “Reduced levels of transforming growth factor-β1, interleukin-12 and increased migration inhibitory factor are associated with severe malaria,” Acta Tropica, vol. 89, no. 3, pp. 319–327, 2004.
[153]  I. Diouf, N. Fievet, S. Doucouré et al., “IL-12 producing monocytes and IFN-γ and TNF-α producing T-lymphocytes are increased in placentas infected by Plasmodium falciparum,” Journal of Reproductive Immunology, vol. 74, no. 1-2, pp. 152–162, 2007.
[154]  J. Ismaili, M. van der Sande, M. J. Holland et al., “Plasmodium falciparum infection of the placenta affects newborn immune responses,” Clinical and Experimental Immunology, vol. 133, no. 3, pp. 414–421, 2003.
[155]  D. F. Fiorentino, A. Zlotnik, T. R. Mosmann, M. Howard, and A. O'Garra, “IL-10 inhibits cytokine production by activated macrophages,” Journal of Immunology, vol. 147, no. 11, pp. 3815–3822, 1991.
[156]  E. A. Achidi, T. O. Apinjoh, and V. P.K. Titanji, “Malaria parasitemia and systemic cytokine bias in pregnancy,” International Journal of Gynecology and Obstetrics, vol. 97, no. 1, pp. 15–20, 2007.
[157]  L. Hviid, T. G. Theander, N. H. Abdulhadi, Y. A. Abu-Zeid, R. A. Bayoumi, and J. B. Jensen, “Transient depletion of T cells with high LFA-1 expression from peripheral circulation during acute Plasmodium falciparum malaria,” European Journal of Immunology, vol. 21, no. 5, pp. 1249–1253, 1991.
[158]  R. Megnekou, L. Hviid, and T. Staalsoe, “Variant-specific immunity to Plasmodium berghei in pregnant mice,” Infection and Immunity, vol. 77, no. 5, pp. 1827–1834, 2009.
[159]  A. M. Carter, “Animal models of human placentation—a review,” Placenta, vol. 28, supplement A, pp. S41–S47, 2007.
[160]  R. Raghupathy, “Th1-type immunity is incompatible with successful pregnancy,” Immunology Today, vol. 18, no. 10, pp. 478–482, 1997.
[161]  E. M. Riley, G. Schneider, I. Sambou, and B. M. Greenwood, “Suppression of cell-mediated immune responses to malaria antigens in pregnant Gambian women,” The American Journal of Tropical Medicine and Hygiene, vol. 40, no. 2, pp. 141–144, 1989.
[162]  N. Fievet, G. Tami, B. Maubert et al., “Cellular immune response to Plasmodium falciparum after pregnancy is related to previous placental infection and parity,” Malaria Journal, vol. 1, no. 1, article 16, 2002.
[163]  U. Frevert and E. Nardin, “Cellular effector mechanisms against Plasmodium liver stages,” Cellular Microbiology, vol. 10, no. 10, pp. 1956–1967, 2008.
[164]  A. Chandele, P. Mukerjee, G. Das, R. Ahmed, and V. S. Chauhan, “Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii,” Immunology, vol. 132, no. 2, pp. 273–286, 2011.
[165]  J. M. Vinetz, S. Kumar, M. F. Good, B. J. Fowlkes, J. A. Berzofsky, and L. H. Miller, “Adoptive transfer of CD8+ T cells from immune animals does not transfer immunity to blood stage Plasmodium yoelii malaria,” Journal of Immunology, vol. 144, no. 3, pp. 1069–1074, 1990.
[166]  S. Lurie, “Changes in age distribution of erythrocytes during pregnancy: a longitudinal study,” Gynecologic and Obstetric Investigation, vol. 36, no. 3, pp. 141–144, 1993.
[167]  C. Othoro, J. M. Moore, K. A. Wannemuehler et al., “Elevated gamma interferon-producing NK cells, CD45RO memory-like T cells, and CD4 T cells are associated with protection against malaria infection in pregnancy,” Infection and Immunity, vol. 76, no. 4, pp. 1678–1685, 2008.
[168]  P. Parham, The Immune System, Garland Science, Abingdon, UK, 3rd edition, 2009.
[169]  P. G. Kremsner, S. Winkler, E. Wildling et al., “High plasma levels of nitrogen oxides are associated with severe disease and correlate with rapid parasitological and clinical cure in Plasmodium falciparum malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 90, no. 1, pp. 44–47, 1996.
[170]  K. Artavanis-Tsakonas, K. Eleme, K. L. McQueen et al., “Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes,” Journal of Immunology, vol. 171, no. 10, pp. 5396–5405, 2003.
[171]  K. Artavanis-Tsakonas, J. E. Tongren, and E. M. Riley, “The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology,” Clinical and Experimental Immunology, vol. 133, no. 2, pp. 145–152, 2003.
[172]  E. Mavoungou, A. J. F. Luty, and P. G. Kremsner, “Natural killer (NK) cell-mediated cytolysis of Plasmodium falciparum-infected human red blood cells in vitro,” European Cytokine Network, vol. 14, no. 3, pp. 134–142, 2003.
[173]  E. Mavoungou, V. Poaty-Mavoungou, F. S. Touré et al., “Impairment of natural killer cell activity in Chlamydia trachomatis infected individuals,” Tropical Medicine and International Health, vol. 4, no. 11, pp. 719–727, 1999.
[174]  H. Sartelet, D. Schleiermacher, J. Y. Le-Hesran et al., “Less HLA-G expression in Plasmodium falciparum-infected third trimester placentas is associated with more natural killer cells,” Placenta, vol. 26, no. 6, pp. 505–511, 2005.
[175]  M. K. Bouyou-Akotet, S. Issifou, J. F. Meye et al., “Depressed natural killer cell cytotoxicity against Plasmodium falciparum-infected erythrocytes during first pregnancies,” Clinical Infectious Diseases, vol. 38, no. 3, pp. 342–347, 2004.
[176]  M. K. Bouyou-Akotet and E. Mavoungou, “Natural killer cell IFN-γ activity is associated with Plasmodium falciparum infection during pregnancy,” Experimental Parasitology, vol. 123, no. 3, pp. 265–268, 2009.
[177]  I. Diouf, N. Fievet, S. Doucouré et al., “Monocyte activation and T cell inhibition in Plasmodium falciparum-infected placenta,” Journal of Infectious Diseases, vol. 189, no. 12, pp. 2235–2242, 2004.
[178]  F. Turrini, H. Ginsburg, F. Bussolino, G. P. Pescarmona, M. V. Serra, and P. Arese, “Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and non-immune determinants and dependence on parasite developmental stage,” Blood, vol. 80, no. 3, pp. 801–808, 1992.
[179]  C. H. Holmes, K. L. Simpson, H. Okada et al., “Complement regulatory proteins at the feto-maternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55),” European Journal of Immunology, vol. 22, no. 6, pp. 1579–1585, 1992.
[180]  A. Conroy, L. Serghides, C. Finney et al., “C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria,” PLoS ONE, vol. 4, no. 3, Article ID e4953, 2009.
[181]  G. Girardi, “Complement inhibition keeps mothers calm and avoids fetal rejection,” Immunological Investigations, vol. 37, no. 5-6, pp. 645–659, 2008.
[182]  K. L. Silver, S. J. Higgins, C. R. McDonald, and K. C. Kain, “Complement driven innate immune response to malaria: fuelling severe malarial diseases,” Cellular Microbiology, vol. 12, no. 8, pp. 1036–1045, 2010.
[183]  E. A. Albrecht, A. M. Chinnaiyan, S. Varambally et al., “C5a-induced gene expression in human umbilical vein endothelial cells,” The American Journal of Pathology, vol. 164, no. 3, pp. 849–859, 2004.
[184]  T. Imamura, T. Sugiyama, L. E. Cuevas, R. Makunde, and S. Nakamura, “Expression of tissue factor, the clotting initiator, on macrophages in Plasmodium falciparum-infected placentas,” Journal of Infectious Diseases, vol. 186, no. 3, pp. 436–440, 2002.
[185]  M. K. Bouyou-Akotet, A. A. Adegnika, S. T. Agnandji et al., “Cortisol and susceptibility to malaria during pregnancy,” Microbes and Infection, vol. 7, no. 11-12, pp. 1217–1223, 2005.
[186]  E. Mavoungou, M. K. Bouyou-Akotet, and P. G. Kremsner, “Effects of prolactin and cortisol on natural killer (NK) cell surface expression and function of human natural cytotoxicity receptors (NKp46, NKp44 and NKp30),” Clinical and Experimental Immunology, vol. 139, no. 2, pp. 287–296, 2005.
[187]  A. Moffett-King, “Natural killer cells and pregnancy,” Nature Reviews Immunology, vol. 2, no. 9, pp. 656–663, 2002.
[188]  N. K. Bayoumi, E. M. Elhassan, M. I. Elbashir, and I. Adam, “Cortisol, prolactin, cytokines and the susceptibility of pregnant Sudanese women to Plasmodium falciparum malaria,” Annals of Tropical Medicine and Parasitology, vol. 103, no. 2, pp. 111–117, 2009.
[189]  F. O. ter Kuile, M. E. Parise, F. H. Verhoeff et al., “The burden of co-infection with human immunodeficiency virus type 1 and malaria in pregnant women in sub-Saharan Africa,” The American Journal of Tropical Medicine and Hygiene, vol. 71, no. 2, supplement, pp. 41–54, 2004.
[190]  V. Mwapasa, S. J. Rogerson, M. E. Molyneux et al., “The effect of Plasmodium falciparum malaria on peripheral and placental HIV-1 RNA concentrations in pregnant Malawian women,” AIDS, vol. 18, no. 7, pp. 1051–1059, 2004.
[191]  A. M. Mount, V. Mwapasa, S. R. Elliott et al., “Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection,” The Lancet, vol. 363, no. 9424, pp. 1860–1867, 2004.
[192]  A. M. van Eijk, J. G. Ayisi, F. O. ter Kuile et al., “Human immunodeficiency virus seropositivity and malaria as risk factors for third-trimester anemia in asymptomatic pregnant women in Western Kenya,” The American Journal of Tropical Medicine and Hygiene, vol. 65, no. 5, pp. 623–630, 2001.
[193]  J. Keen, L. Serghides, K. Ayi et al., “HIV impairs opsonic phagocytic clearance of pregnancy-associated malaria parasites,” PLoS Medicine, vol. 4, no. 5, Article ID e181, 2007.
[194]  P. F. Mens, E. C. Bojtor, and H. D. F. H. Schallig, “Molecular interactions in the placenta during malaria infection,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 152, no. 2, pp. 126–132, 2010.
[195]  E. K. Pallotto and H. W. Kilbride, “Perinatal outcome and later implications of intrauterine growth restriction,” Clinical Obstetrics and Gynecology, vol. 49, no. 2, pp. 257–269, 2006.
[196]  B. J. Okoko, G. Enwere, and M. O. C. Ota, “The epidemiology and consequences of maternal malaria: a review of immunological basis,” Acta Tropica, vol. 87, no. 2, pp. 193–205, 2003.
[197]  A. J. Umbers, P. Boeuf, C. Clapham et al., “Placental malaria-associated inflammation disturbs the insulin-like growth factor axis of fetal growth regulation,” Journal of Infectious Diseases, vol. 203, no. 4, pp. 561–569, 2011.
[198]  K. L. Silver, K. Zhong, R. G. F. Leke, D. W. Taylor, and K. C. Kain, “Dysregulation of angiopoietins is associated with placental malaria and low birth weight,” PLoS ONE, vol. 5, no. 3, Article ID e9481, 2010.
[199]  J. F. Etard, B. Kodio, and C. Ronsmans, “Seasonal variation in direct obstetric mortality in rural Senegal: role of malaria?” The American Journal of Tropical Medicine and Hygiene, vol. 68, no. 4, pp. 503–504, 2003.
[200]  B. J. Brabin and P. M. Johnson, “Placental malaria and pre-eclampsia through the looking glass backwards?” Journal of Reproductive Immunology, vol. 65, no. 1, pp. 1–15, 2005.
[201]  A. Muehlenbachs, T. K. Mutabingwa, S. Edmonds, M. Fried, and P. E. Duffy, “Hypertension and maternal-fetal conflict during placental malaria,” PLoS Medicine, vol. 3, no. 11, Article ID e446, 2006.
[202]  N. G. Schwarz, A. A. Adegnika, L. P. Breitling et al., “Placental malaria increases malaria risk in the first 30 months of life,” Clinical Infectious Diseases, vol. 47, no. 8, pp. 1017–1025, 2008.
[203]  M. K. Bouyou-Akotet, M. Kombila, P. G. Kremsner, and E. Mavoungou, “Cytokine profiles in peripheral, placental and cord blood in pregnant women from an area endemic for Plasmodium falciparum,” European Cytokine Network, vol. 15, no. 2, pp. 120–125, 2004.
[204]  T. K. Hartman, S. J. Rogerson, and P. R. Fischer, “The impact of maternal malaria on newborns,” Annals of Tropical Paediatrics, vol. 30, no. 4, pp. 271–282, 2010.
[205]  L. Hviid and T. Staalsoe, “Malaria immunity in infants: a special case of a general phenomenon?” Trends in Parasitology, vol. 20, no. 2, pp. 66–72, 2004.
[206]  B. Brabin, “Fetal anaemia in malarious areas: its causes and significance,” Annals of Tropical Paediatrics, vol. 12, no. 3, pp. 303–310, 1992.
[207]  E. M. Riley, G. E. Wagner, B. D. Akanmori, and K. A. Koram, “Do maternally acquired antibodies protect infants from malaria infection?” Parasite Immunology, vol. 23, no. 2, pp. 51–59, 2001.
[208]  J. Bockhorst, F. Lu, J. H. Janes et al., “Structural polymorphism and diversifying selection on the pregnancy malaria vaccine candidate VAR2CSA,” Molecular and Biochemical Parasitology, vol. 155, no. 2, pp. 103–112, 2007.
[209]  L. Oehler, M. Kollars, B. Bohle et al., “Interleukin-10 inhibits burst-forming unit-erythroid growth by suppression of endogenous granulocyte-macrophage colony-stimulating factor production from T cells,” Experimental Hematology, vol. 27, no. 2, pp. 217–223, 1999.
[210]  H. Tilg, H. Ulmer, A. Kaser, and G. Weiss, “Role of IL-10 for induction of anemia during inflammation,” Journal of Immunology, vol. 169, no. 4, pp. 2204–2209, 2002.
[211]  S. Ludwiczek, E. Aigner, I. Theurl, and G. Weiss, “Cytokine-mediated regulation of iron transport in human monocytic cells,” Blood, vol. 101, no. 10, pp. 4148–4154, 2003.
[212]  I. A. Clark and G. Chaudhri, “Tumour necrosis factor may contribute to the anaemia of malaria by causing dyserythropoiesis and erythrophagocytosis,” British Journal of Haematology, vol. 70, no. 1, pp. 99–103, 1988.
[213]  O. Leopardi, W. Naughten, L. Salvia et al., “Malaric placentas: a quantitative study and clinico-pathological correlations,” Pathology Research and Practice, vol. 192, no. 9, pp. 892–900, 1996, discussion 899–900.
[214]  R. J. Guidotti, “Anaemia in pregnancy in developing countries,” British Journal of Obstetrics and Gynaecology, vol. 107, no. 4, pp. 437–438, 2000.
[215]  N. R. van den Broek and E. A. Letsky, “Etiology of anemia in pregnancy in south Malawi,” American Journal of Clinical Nutrition, vol. 72, no. 1, supplement, pp. 247–256, 2000.
[216]  C. T. Ndao, A. Dumont, N. Fievet, S. Doucoure, A. Gaye, and J. Y. Lehesran, “Placental malarial infection as a risk factor for hypertensive disorders during pregnancy in Africa: a case-control study in an urban area of Senegal, West Africa,” American Journal of Epidemiology, vol. 170, no. 7, pp. 847–853, 2009.
[217]  J. Calleja-Agius and M. P. Brincat, “Recurrent miscarriages: what is the role of cytokines?” Gynecological Endocrinology, vol. 24, no. 12, pp. 663–668, 2008.
[218]  M. K. Higgins, “The structure of a chondroitin sulfate-binding domain important in placental malaria,” Journal of Biological Chemistry, vol. 283, no. 32, pp. 21842–21846, 2008.
[219]  K. Singh, A. G. Gittis, P. Nguyen, D. C. Gowda, L. H. Miller, and D. N. Garboczi, “Structure of the DBL3x domain of pregnancy-associated malaria protein VAR2CSA complexed with chondroitin sulfate A,” Nature Structural and Molecular Biology, vol. 15, no. 9, pp. 932–938, 2008.
[220]  P. Fernandez, S. Petres, S. Mécheri, J. Gysin, and A. Scherf, “Strain-transcendent immune response to recombinant VAR2CSA DBL5-ε domain block P. falciparum adhesion to placenta-derived BeWo cells under flow conditions,” PLoS ONE, vol. 5, no. 9, Article ID e12558, 2010.
[221]  M. A. Nielsen, V. V. Pinto, M. Resende et al., “Induction of adhesion-inhibitory antibodies against placental Plasmodium falciparum parasites by using single domains of VAR2CSA,” Infection and Immunity, vol. 77, no. 6, pp. 2482–2487, 2009.
[222]  M. Avril, M. M. Cartwright, M. J. Hathaway et al., “Immunization with VAR2CSA-DBL5 recombinant protein elicits broadly cross-reactive antibodies to placental Plasmodium falciparum-infected erythrocytes,” Infection and Immunity, vol. 78, no. 5, pp. 2248–2256, 2010.
[223]  P. Fernandez, N. KViebig, S. Dechavanne et al., “Var2CSA DBL6-ε domain expressed in HEK293 induces limited cross-reactive and blocking antibodies to CSA binding parasites,” Malaria Journal, vol. 7, no. 9, article 170, 2008.
[224]  F. Yosaatmadja, K. T. Andrews, M. F. Duffy, G. V. Brown, J. G. Beeson, and S. J. Rogerson, “Characterization of VAR2CSA-deficient Plasmodium falciparum-infected erythrocytes selected for adhesion to the BeWo placental cell line,” Malaria Journal, vol. 7, no. 3, article 51, 2008.
[225]  P. A. Magistrado, D. Minja, J. Doritchamou et al., “High efficacy of anti DBL4ε-VAR2CSA antibodies in inhibition of CSA-binding Plasmodium falciparum-infected erythrocytes from pregnant women,” Vaccine, vol. 29, no. 3, pp. 437–443, 2011.
[226]  M. Avril, M. M. Cartwright, M. J. Hathaway, and J. D. Smith, “Induction of strain-transcendent antibodies to placental-type isolates with VAR2CSA DBL3 or DBL5 recombinant proteins,” Malaria Journal, vol. 10, no. 1, article 36, 2011.
[227]  M. Avril, M. J. Hathaway, A. Srivastava et al., “Antibodies to a full-length VAR2CSA immunogen are broadly strain-transcendent but do not cross-inhibit different placental-type parasite isolates,” PLoS ONE, vol. 6, no. 2, Article ID e16622, 2011.
[228]  M. Dahlb?ck, L. M. J?rgensen, M. A. Nielsen et al., “The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains,” Journal of Biological Chemistry, vol. 286, no. 18, pp. 15908–15917, 2011.
[229]  V. V. Pinto, S. B. Ditlev, K. E. Jensen et al., “Differential induction of functional IgG using the Plasmodium falciparum placental malaria vaccine candidate VAR2CSA,” PLoS ONE, vol. 6, no. 3, Article ID e17942, 2011.
[230]  P. D. Crompton, S. K. Pierce, and L. H. Miller, “Advances and challenges in malaria vaccine development,” Journal of Clinical Investigation, vol. 120, no. 12, pp. 4168–4178, 2010.
[231]  S. Casares, T. D. Brumeanu, and T. L. Richie, “The RTS,S malaria vaccine,” Vaccine, vol. 28, no. 31, pp. 4880–4894, 2010.
[232]  The RTS,S Clinical Trials Partnership, “First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children,” The New England Journal of Medicine, vol. 365, no. 20, pp. 1863–1875, 2011.
[233]  D. Butler, “Malaria vaccine results face scrutiny,” Nature, vol. 478, no. 7370, pp. 439–440, 2011.
[234]  A. Parakh, N. Agarwal, A. Aggarwal, and A. Aneja, “Plasmodium vivax malaria in children: uncommon manifestations,” Annals of Tropical Paediatrics, vol. 29, no. 4, pp. 253–256, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133