全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Markers with Predictive and Prognostic Relevance in Lung Cancer

DOI: 10.1155/2012/729532

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lung cancer accounts for the majority of cancer-related deaths worldwide of which non-small-cell lung carcinoma alone takes a toll of around 85%. Platinum-based therapy is the stronghold for lung cancer at present. The discovery of various molecular alterations that underlie lung cancer has contributed to the development of specifically targeted therapies employing specific mutation inhibitors. Targeted chemotherapy based on molecular profiling has shown great promise in lung cancer treatment. Various molecular markers with predictive and prognostic significance in lung cancer have evolved as a result of advanced research. Testing of EGFR and Kras mutations is now a common practice among community oncologists, and more recently, ALK rearrangements have been added to this group. This paper discusses various predictive and prognostic markers that are being investigated and have shown significant relevance which can be exploited for targeted treatment in lung cancer. 1. Introduction Lung cancer is the leading cause of cancer-related deaths in both men and women worldwide. The upward trend in lung cancer mortality is due to lack of significant markers for early detection and treatment. Lung cancer, the leading cancer killer among men and women worldwide, is considered to be a deadly illness because of low proportion of subjects (≈15%) who are still alive 5 years after the initial diagnosis. This low 5-year survival rate is mainly because most of subjects present with advanced stages at the time of diagnosis. Diagnosing lung cancer at localized early stage increases the 5-year survival rate significantly. Advances in molecular biology have eased the systematic efforts to identify molecular markers for lung cancer with valuable predictive and prognostic significance. It is estimated that around 10–20 genetic events including alterations in oncogenes and tumor suppressor genes (TSG) will have been occurred by the time a lung tumor becomes clinically evident [1]. These alterations if studied and characterized systematically using the present day advanced molecular analytic techniques can be developed as potential predictive and prognostic markers. Moreover, by understanding molecular mechanisms of the disease and potential treatment, molecularly targeted treatment strategies can be adopted. Many attempts have been undertaken by scientists worldwide to identify potential biomarker for lung cancer—the world no. 1 among cancer killers. 2. Molecular Markers in Lung Cancer A molecular marker for cancer can be defined as a molecular entity (DNA, RNA, or protein)

References

[1]  Y. Tran, K. Benbatoul, K. Gorse et al., “Novel regions of allelic deletion on chromosome 18p in tumors of the lung, brain and breast,” Oncogene, vol. 17, no. 26, pp. 3499–3505, 1998.
[2]  G. W. Sherbet and M. S. Lakshi, The Genetics of Cancer, Academic Press, San Diego, Calif, USA, 1997.
[3]  I. Miura, S. L. Graziano, Jin Quan Cheng, L. A. Doyle, and J. R. Testa, “Chromosome alterations in human small cell lung cancer: frequent involvement of 5q,” Cancer Research, vol. 52, no. 5, pp. 1322–1328, 1992.
[4]  J. R. Testa and J. M. Siegfried, “Chromosome abnormalities in human non-small cell lung cancer,” Cancer Research, vol. 52, no. 9, supplement, pp. 2702s–2706s, 1992.
[5]  D. F. Jarrard, M. J. G. Bussemakers, G. S. Bova, and W. B. Isaacs, “Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues,” Clinical Cancer Research, vol. 1, no. 12, pp. 1471–1478, 1995.
[6]  H. Nakanishi, T. Suda, M. Katoh et al., “Loss of imprinting of PEG1/MEST in lung cancer cell lines,” Oncology Reports, vol. 12, no. 6, pp. 1273–1278, 2004.
[7]  T. P. Dang, A. F. Gazdar, A. K. Virmani et al., “Chromosome 19 translocation, overexpression of Notch3, and human lung cancer,” Journal of the National Cancer Institute, vol. 92, no. 16, pp. 1355–1357, 2000.
[8]  Y. Sekido, K. M. Fong, and J. D. Minna, “Molecular genetics of lung cancer,” Annual Review of Medicine, vol. 54, pp. 73–87, 2003.
[9]  G. Klein and E. Klein, “Surveillance against tumors—is it mainly immunological?” Immunology Letters, vol. 100, no. 1, pp. 29–33, 2005.
[10]  R. S. Heist and J. A. Engelman, “SnapShot: non-small cell lung cancer,” Cancer Cell, vol. 21, no. 3, pp. 448–448.e2, 2012.
[11]  W. Pao and N. Girard, “New driver mutations in non-small-cell lung cancer,” The Lancet Oncology, vol. 12, no. 2, pp. 175–180, 2011.
[12]  W. Pao and J. Chmielecki, “Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer,” Nature Reviews Cancer, vol. 10, no. 11, pp. 760–774, 2010.
[13]  J. Soh, N. Okumura, W. W. Lockwood et al., “Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells,” PLoS ONE, vol. 4, no. 10, Article ID e7464, 2009.
[14]  A. R. Li, D. Chitale, G. J. Riely et al., “Clinical testing experience and relationship to EGFR gene copy number and immunohistochemical expression,” Journal of Molecular Diagnostics, vol. 10, no. 3, pp. 242–248, 2008.
[15]  E. Giovannetti, P. A. Zucali, G. J. Peters et al., “Association of polymorphisms in AKT1 and EGFR with clinical outcome and toxicity in non-small cell lung cancer patients treated with gefitinib,” Molecular Cancer Therapeutics, vol. 9, no. 3, pp. 581–593, 2010.
[16]  L. E. Coate, T. John, M. S. Tsao, and F. A. Shepherd, “Molecular predictive and prognostic markers in non-small-cell lung cancer,” The Lancet Oncology, vol. 10, no. 10, pp. 1001–1010, 2009.
[17]  S. Forbes, J. Clements, E. Dawson et al., “COSMIC 2005,” British Journal of Cancer, vol. 94, no. 2, pp. 318–322, 2006.
[18]  M. S. Brose, P. Volpe, M. Feldman et al., “BRAF and RAS mutations in human lung cancer and melanoma,” Cancer Research, vol. 62, no. 23, pp. 6997–7000, 2002.
[19]  T. Kosaka, Y. Yatabe, R. Onozato, H. Kuwano, and T. Mitsudomi, “Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma,” Journal of Thoracic Oncology, vol. 4, no. 1, pp. 22–29, 2009.
[20]  G. J. Riely, J. Marks, and W. Pao, “KRAS mutations in non-small cell lung cancer,” Proceedings of the American Thoracic Society, vol. 6, no. 2, pp. 201–205, 2009.
[21]  N. E. Mills, C. L. Fishman, J. Scholes, S. E. Anderson, W. N. Rom, and D. R. Jacobson, “Detection of K-ras oncogene mutations in bronchoalveolar lavage fluid for lung cancer diagnosis,” Journal of the National Cancer Institute, vol. 87, no. 14, pp. 1056–1060, 1995.
[22]  K. Sugio, T. Ishida, H. Yokoyama, T. Inoue, K. Sugimachi, and T. Sasazuki, “ras Gene mutations as a prognostic marker in adenocarcinoma of the human lung without lymph node metastasis,” Cancer Research, vol. 52, no. 10, pp. 2903–2906, 1992.
[23]  C. Camps, R. Sirera, R. Bremnes et al., “Is there a prognostic role of K-ras point mutations in the serum of patients with advanced non-small cell lung cancer?” Lung Cancer, vol. 50, no. 3, pp. 339–346, 2005.
[24]  R. Rosell, M. Monzó, A. Pifarré et al., “Molecular staging of non-small cell lung cancer according to K-ras genotypes,” Clinical Cancer Research, vol. 2, no. 6, pp. 1083–1086, 1996.
[25]  M. Raponi, H. Winkler, and N. C. Dracopoli, “KRAS mutations predict response to EGFR inhibitors,” Current Opinion in Pharmacology, vol. 8, no. 4, pp. 413–418, 2008.
[26]  W. N. Rom, J. G. Hay, T. C. Lee, Y. Jiang, and K. M. Tchou-Wong, “Molecular and genetic aspects of lung cancer,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 4 I, pp. 1355–1367, 2000.
[27]  A. Sigal and V. Rotter, “Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome,” Cancer Research, vol. 60, no. 24, pp. 6788–6793, 2000.
[28]  Y. Cho, S. Gorina, P. D. Jeffrey, and N. P. Pavletich, “Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations,” Science, vol. 265, no. 5170, pp. 346–355, 1994.
[29]  C. Caron de Fromentel and T. Soussi, “TP53 tumor suppressor gene: a model for investigating human mutagenesis,” Genes Chromosomes and Cancer, vol. 4, no. 1, pp. 1–15, 1992.
[30]  E. Jassem, J. Nikliński, R. Rosell et al., “Types and localisation of p53 gene mutations: a report on 332 non-small cell lung cancer patients,” Lung Cancer, vol. 34, no. 2, pp. S47–S51, 2001.
[31]  P. May and E. May, “Twenty years of p53 research: structural and functional aspects of the p53 protein,” Oncogene, vol. 18, no. 53, pp. 7621–7636, 1999.
[32]  W. M. Gao, H. H. Mady, G. Y. Yu et al., “Comparison of p53 mutations between adenocarcinoma and squamous cell carcinoma of the lung: unique spectra involving G to A transitions and G to T transversions in both histologic types,” Lung Cancer, vol. 40, no. 2, pp. 141–150, 2003.
[33]  Y. Kishimoto, Y. Murakami, M. Shiraishi, K. Hayashi, and T. Sekiya, “Aberrations of the p53 tumor suppressor gene in human non-small cell carcinomas of the lung,” Cancer Research, vol. 52, no. 17, pp. 4799–4804, 1992.
[34]  R. V. Cherneva, O. B. Georgiev, D. B. Petrov, I. I. Dimova, and D. I. Toncheva, “Expression levels of p53 messenger RNA detected by real time PCR in tumor tissue, lymph nodes and peripheral blood of patients with non-small cell lung cancer—new perspectives for clinicopathological application,” Biotechnology and Biotechnological Equipment, vol. 23, no. 2, pp. 1247–1249, 2009.
[35]  R. Lubin, G. Zalcman, L. Bouchet et al., “Serum p53 antibodies as early markers of lung cancer,” Nature Medicine, vol. 1, no. 7, pp. 701–702, 1995.
[36]  C. J. Piyathilake, A. R. Frost, U. Manne, H. Weiss, D. C. Heimburger, and W. E. Grizzle, “Nuclear accumulation of p53 is a potential marker for the development of squamous cell lung cancer in smokers,” Chest, vol. 123, no. 1, pp. 181–186, 2003.
[37]  D. C. Quinlan, A. G. Davidson, C. L. Summers, H. E. Warden, and H. M. Doshi, “Accumulation of p53 protein correlates with a poor prognosis in human lung cancer,” Cancer Research, vol. 52, no. 17, pp. 4828–4831, 1992.
[38]  M. S. Tsao, S. Aviel-Ronen, K. Ding et al., “Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5240–5247, 2007.
[39]  E. Steels, M. Paesmans, T. Berghmans et al., “Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis,” European Respiratory Journal, vol. 18, no. 4, pp. 705–719, 2001.
[40]  F. M. Wachters, L. S. M. Wong, W. Timens, H. H. Kampinga, and H. J. M. Groen, “ERCC1, hRad51, and BRCA1 protein expression in relation to tumour response and survival of stage III/IV NSCLC patients treated with chemotherapy,” Lung Cancer, vol. 50, no. 2, pp. 211–219, 2005.
[41]  R. Rosell, M. Skrzypski, E. Jassem et al., “BRCA1: a novel prognostic factor in resected non-small-cell lung cancer,” PLoS ONE, vol. 2, no. 11, Article ID e1129, 2007.
[42]  L. Wang, J. Wei, X. Qian et al., “ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel,” BMC Cancer, vol. 8, article 97, 2008.
[43]  C. Aggarwal, N. Somaiah, and G. R. Simon, “Biomarkers with predictive and prognostic function in non-small cell lung cancer: ready for prime time?” Journal of the National Comprehensive Cancer Network, vol. 8, no. 7, pp. 822–832, 2010.
[44]  R. Rosell, K. D. Danenberg, V. Alberola et al., “Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients,” Clinical Cancer Research, vol. 10, no. 4, pp. 1318–1325, 2004.
[45]  A. Gautam, Z. R. Li, and G. Bepler, “RRM1-induced metastasis suppression through PTEN-regulated pathways,” Oncogene, vol. 22, no. 14, pp. 2135–2142, 2003.
[46]  Z. Zheng, T. Chen, X. Li, E. Haura, A. Sharma, and G. Bepler, “DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer,” New England Journal of Medicine, vol. 356, no. 8, pp. 800–808, 2007.
[47]  G. Bepler, I. Kusmartseva, S. Sharma et al., “RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 24, no. 29, pp. 4731–4737, 2006.
[48]  R. Altaha, X. Liang, J. J. Yu, and E. Reed, “Excision repair cross complementing-group 1: gene expression and platinum resistance,” International Journal of Molecular Medicine, vol. 14, no. 6, pp. 959–970, 2004.
[49]  K. A. Olaussen, A. Dunant, P. Fouret et al., “DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy,” New England Journal of Medicine, vol. 355, no. 10, pp. 983–991, 2006.
[50]  P. Sève, J. Mackey, S. Isaac et al., “Class III β-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel,” Molecular Cancer Therapeutics, vol. 4, no. 12, pp. 2001–2007, 2005.
[51]  P. Sève, R. Lai, K. Ding et al., “Class III β-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR.10,” Clinical Cancer Research, vol. 13, no. 3, pp. 994–999, 2007.
[52]  I. I. Wistuba, A. F. Gazdar, and J. D. Minna, “Molecular genetics of small cell lung carcinoma,” Seminars in Oncology, vol. 28, no. 2, pp. 3–13, 2001.
[53]  K. Sugio, S. Tsukamoto, C. Ushijima et al., “Clinical significance of the Rb expression in adenocarcinoma of the lung,” Anticancer Research, vol. 21, no. 3 B, pp. 1931–1935, 2001.
[54]  H. J. Xu, D. C. Quinlan, A. G. Davidson et al., “Altered retinoblastoma protein expression and prognosis in early-stage non-small-cell lung carcinoma,” Journal of the National Cancer Institute, vol. 86, no. 9, pp. 695–699, 1994.
[55]  M. Caputi, A. M. Groeger, V. Esposito et al., “Loss of pRb2/p130 expression is associated with unfavorable clinical outcome in lung cancer,” Clinical Cancer Research, vol. 8, no. 12, pp. 3850–3856, 2002.
[56]  T. A. D'Amico, M. Massey, J. E. Herndon, M. B. Moore, D. H. Harpole, and J. R. Benfield, “A biologic risk model for stage I lung cancer: immunohistochemical analysis of 408 patients with the use of ten molecular markers,” Journal of Thoracic and Cardiovascular Surgery, vol. 117, no. 4, pp. 736–743, 1999.
[57]  F. E. Bleeker, L. Felicioni, F. Buttitta et al., “AKT1E17K in human solid tumours,” Oncogene, vol. 27, no. 42, pp. 5648–5650, 2008.
[58]  J. D. Carpten, A. L. Faber, C. Horn et al., “A transforming mutation in the pleckstrin homology domain of AKT1 in cancer,” Nature, vol. 448, no. 7152, pp. 439–444, 2007.
[59]  A. S. Tsao, T. McDonnell, S. Lam et al., “Increased phospho-AKT (Ser473) expression in bronchial dysplasia: implications for lung cancer prevention studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 7, pp. 660–664, 2003.
[60]  B. R. Balsara, J. Pei, Y. Mitsuuchi et al., “Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions,” Carcinogenesis, vol. 25, no. 11, pp. 2053–2059, 2004.
[61]  L. Davidson, H. MacCario, N. M. Perera et al., “Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN,” Oncogene, vol. 29, no. 5, pp. 687–697, 2010.
[62]  G. Jin, M. J. Kim, H. S. Jeon et al., “PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers,” Lung Cancer, vol. 69, no. 3, pp. 279–283, 2010.
[63]  M. L. Sos, M. Koker, B. A. Weir et al., “PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of akt and EGFR,” Cancer Research, vol. 69, no. 8, pp. 3256–3261, 2009.
[64]  F. Janku, J. W. Jennifer, N. W. Shannon, et al., “PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations,” Journal of Clinical Oncology, vol. 29, supplement, abstract 10507, 2011.
[65]  P. C. Ma, T. Kijima, G. Maulik et al., “c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions,” Cancer Research, vol. 63, no. 19, pp. 6272–6281, 2003.
[66]  M. Kong-Beltran, S. Seshagiri, J. Zha et al., “Somatic mutations lead to an oncogenic deletion of Met in lung cancer,” Cancer Research, vol. 66, no. 1, pp. 283–289, 2006.
[67]  E. Benedettini, L. M. Sholl, M. Peyton et al., “Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis,” American Journal of Pathology, vol. 177, no. 1, pp. 415–423, 2010.
[68]  D. R. Spigel, T. J. Ervin, R. Ramlau, et al., “Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC,” Journal of Clinical Oncology, vol. 29, supplement, abstract 7505, 2011.
[69]  J. Bean, C. Brennan, J. Y. Shih et al., “MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20932–20937, 2007.
[70]  J. L. Marks, Y. Gong, D. Chitale et al., “Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma,” Cancer Research, vol. 68, no. 14, pp. 5524–5528, 2008.
[71]  F. Buttitta, F. Barassi, G. Fresu et al., “Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: mutations are mainly present in adenocarcinomas with bronchioloalveolar features,” International Journal of Cancer, vol. 119, no. 11, pp. 2586–2591, 2006.
[72]  S. E. Wang, A. Narasanna, M. Perez-Torres et al., “HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors,” Cancer Cell, vol. 10, no. 1, pp. 25–38, 2006.
[73]  D. Li, L. Ambrogio, T. Shimamura et al., “BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models,” Oncogene, vol. 27, no. 34, pp. 4702–4711, 2008.
[74]  V. G. Gorgoulis, P. Zacharatos, A. Kotsinas et al., “Alterations of the p16-pRb pathway and the chromosome locus 9p21-22 in non-small-cell lung carcinomas: relationship with p53 and MDM2 protein expression,” American Journal of Pathology, vol. 153, no. 6, pp. 1749–1765, 1998.
[75]  H. Davies, G. R. Bignell, C. Cox et al., “Mutations of the BRAF gene in human cancer,” Nature, vol. 417, no. 6892, pp. 949–954, 2002.
[76]  H. Sasaki, O. Kawano, K. Endo et al., “Uncommon V599E BRAF mutations in Japanese patients with lung cancer supported by the AstraZeneca Research grant, 2004,” Journal of Surgical Research, vol. 133, no. 2, pp. 203–206, 2006.
[77]  K. Naoki, T. H. Chen, W. G. Richards, D. J. Sugarbaker, and M. Meyerson, “Missense mutations of the BRAF gene in human lung adenocarcinoma,” Cancer Research, vol. 62, no. 23, pp. 7001–7003, 2002.
[78]  J. Gandhi, J. Zhang, Y. Xie et al., “Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines,” PLoS ONE, vol. 4, no. 2, Article ID e4576, 2009.
[79]  K. T. Flaherty, I. Puzanov, K. B. Kim et al., “Inhibition of mutated, activated BRAF in metastatic melanoma,” New England Journal of Medicine, vol. 363, no. 9, pp. 809–819, 2010.
[80]  P. B. Chapman, A. Hauschild, C. Robert et al., “Improved survival with vemurafenib in melanoma with BRAF V600E mutation,” New England Journal of Medicine, vol. 364, no. 26, pp. 2507–2516, 2011.
[81]  M. Soda, Y. L. Choi, M. Enomoto et al., “Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer,” Nature, vol. 448, no. 7153, pp. 561–566, 2007.
[82]  E. L. Kwak, Y. J. Bang, D. R. Camidge et al., “Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer,” New England Journal of Medicine, vol. 363, no. 18, pp. 1693–1703, 2010.
[83]  D. R. Camidge, S. A. Kono, X. Lu et al., “Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed,” Journal of Thoracic Oncology, vol. 6, no. 4, pp. 774–780, 2011.
[84]  E. Sonnenberg, A. Godecke, B. Walter, F. Bladt, and C. Birchmeier, “Transient and locally restricted expression of the ros1 protooncogene during mouse development,” EMBO Journal, vol. 10, no. 12, pp. 3693–3702, 1991.
[85]  L. V. Sequist, S. Gettinger, N. N. Senzer et al., “Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 33, pp. 4953–4960, 2010.
[86]  T. Sasaki, J. Koivunen, A. Ogino et al., “A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors,” Cancer Research, vol. 71, no. 18, pp. 6051–6060, 2011.
[87]  Y. L. Choi, M. Soda, Y. Yamashita et al., “EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors,” New England Journal of Medicine, vol. 363, no. 18, pp. 1734–1739, 2010.
[88]  O. Kawano, H. Sasaki, K. Endo et al., “PIK3CA mutation status in Japanese lung cancer patients,” Lung Cancer, vol. 54, no. 2, pp. 209–215, 2006.
[89]  L. V. Sequist, B. A. Waltman, D. Dias-Santagata et al., “Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors,” Science Translational Medicine, vol. 3, no. 75, Article ID 75ra26, 2011.
[90]  E. Sonnenberg-Riethmacher, B. Walter, D. Riethmacher, S. G?decke, and C. Birchmeier, “The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis,” Genes and Development, vol. 10, no. 10, pp. 1184–1193, 1996.
[91]  Z. Z. Liu, J. Wada, A. Kumar, F. A. Carone, M. Takahashi, and Y. S. Kanwar, “Comparative role of phosphotyrosine kinase domains of c-ros and c-ret protooncogenes in metanephric development with respect to growth factors and matrix morphogens,” Developmental Biology, vol. 178, no. 1, pp. 133–148, 1996.
[92]  J. Chen, C. S. Zong, and L. H. Wang, “Tissue and epithelial cell-specific expression of chicken proto-oncogene c-ros in several organs suggests that it may play roles in their development and mature functions,” Oncogene, vol. 9, no. 3, pp. 773–780, 1994.
[93]  K. Rikova, A. Guo, Q. Zeng et al., “Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer,” Cell, vol. 131, no. 6, pp. 1190–1203, 2007.
[94]  A. E. Bonner, W. J. Lemon, T. R. Devereux, R. A. Lubet, and M. You, “Molecular profiling of mouse lung tumors: association with tumor progression, lung development, and human lung adenocarcinomas,” Oncogene, vol. 23, no. 5, pp. 1166–1176, 2004.
[95]  K. Bergethon, A. T. Shaw, S.-H. I. Ou et al., “ROS1 rearrangements define a unique molecular class of lung cancers,” vol. 30, no. 8, pp. 863–870, 2012.
[96]  N. Turner and R. Grose, “Fibroblast growth factor signalling: from development to cancer,” Nature Reviews Cancer, vol. 10, no. 2, pp. 116–129, 2010.
[97]  J. Weiss, M. L. Sos, D. Seidel et al., “Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer,” Science Translational Medicine, vol. 2, no. 62, Article ID 62ra93, 2010.
[98]  A. Dutt, A. H. Ramos, P. S. Hammerman et al., “Inhibitor-sensitive fgfr1 amplification in human non-small cell lung cancer,” PLoS ONE, vol. 6, no. 6, Article ID e20351, 2011.
[99]  P. S. Hammerman, M. L. Sos, and A. H. Ramos, “Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer,” Cancer Discovery, vol. 1, p. 78, 2011.
[100]  O. Ichikawa, M. Osawa, N. Nishida, N. Goshima, N. Nomura, and I. Shimada, “Structural basis of the collagen-binding mode of discoidin domain receptor 2,” EMBO Journal, vol. 26, no. 18, pp. 4168–4176, 2007.
[101]  E. Day, B. Waters, K. Spiegel et al., “Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib,” European Journal of Pharmacology, vol. 599, no. 1-3, pp. 44–53, 2008.
[102]  T. T. Sreelekha, M. Rajesh, V. Anil Kumar, J. Madhavan, and P. Balaram, “CYP1A1m2 polymorphisms regulate estrogen and interleukin-6 in lung cancer,” Molecular Medicine Reports, vol. 3, no. 6, pp. 971–976, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133