全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Immunopathogenesis of Human T-Cell Leukemia Virus Type-1-Associated Myelopathy/Tropical Spastic Paraparesis: Recent Perspectives

DOI: 10.1155/2012/259045

Full-Text   Cite this paper   Add to My Lib

Abstract:

Human T-cell leukemia virus type-1 (HTLV-1) is a replication-competent human retrovirus associated with two distinct types of disease only in a minority of infected individuals: the malignancy known as adult T-cell leukemia (ATL) and a chronic inflammatory central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic progressive myelopathy characterized by spastic paraparesis, sphincter dysfunction, and mild sensory disturbance in the lower extremities. Although the factors that cause these different manifestations of HTLV-1 infection are not fully understood, accumulating evidence from host population genetics, viral genetics, DNA expression microarrays, and assays of lymphocyte function suggests that complex virus-host interactions and the host immune response play an important role in the pathogenesis of HAM/TSP. Especially, the efficiency of an individual's cytotoxic T-cell (CTL) response to HTLV-1 limits the HTLV-1 proviral load and the risk of HAM/TSP. This paper focuses on the recent advances in HAM/TSP research with the aim to identify the precise mechanisms of disease, in order to develop effective treatment and prevention. 1. Introduction Human T-cell leukemia virus type-1 (HTLV-1) is a human retrovirus etiologically associated with adult T-cell leukemia (ATL) [1–3] and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [4, 5]. HAM/TSP is a chronic progressive myelopathy characterized by spastic paraparesis, sphincter dysfunction, and mild sensory disturbance in the lower extremities [6]. Cases of HAM/TSP have been reported throughout the HTLV-1 endemic areas such as Southern Japan, the Caribbean, Central and South America, the Middle East, Melanesia, and equatorial regions of Africa [7]. Sporadic cases have also been described in nonendemic areas such as the United States and Europe, mainly in immigrants from an HTLV-1 endemic area. In contrast to HIV-1 infection, few with HTLV-1 develop disease: approximately 2%-3% of infected persons develop ATL [8] and other 0.25%–3.8% develop HAM/TSP [9–12], while the majority of infected individuals remain lifelong asymptomatic carriers (ACs). However, the ability to evaluate the individual risk of HTLV-1-associated diseases in each AC would make a significant clinical impact, especially in HTLV-1 endemic areas. During the last three decades since the discovery of HTLV-1 as the first pathogenic human retrovirus, advances in HTLV-1 research have helped us to understand the clinical features of HTLV-1 associated diseases, the

References

[1]  B. J. Poiesz, F. W. Ruscetti, A. F. Gazdar, P. A. Bunn, J. D. Minna, and R. C. Gallo, “Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 12, pp. 7415–7419, 1980.
[2]  Y. Hinuma, K. Nagata, M. Hanaoka, et al., “Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 10, pp. 6476–6480, 1981.
[3]  M. Yoshida, M. Seiki, K. Yamaguchi, and K. Takatsuki, “Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 8, pp. 2534–2537, 1984.
[4]  M. Osame, K. Usuku, S. Izumo, et al., “HTLV-I associated myelopathy, a new clinical entity,” The Lancet, vol. 1, no. 8488, pp. 1031–1032, 1986.
[5]  A. Gessain, F. Barin, J. C. Vernant, et al., “Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis,” The Lancet, vol. 2, no. 8452, pp. 407–410, 1985.
[6]  M. Nakagawa, K. Nakahara, Y. Maruyama et al., “Therapeutic trials in 200 patients with HTLV-I-associated myelopathy/tropical spastic paraparesis,” Journal of NeuroVirology, vol. 2, no. 5, pp. 345–355, 1996.
[7]  K. Verdonck, E. González, S. van Dooren, A. M. Vandamme, G. Vanham, and E. Gotuzzo, “Human T-lymphotropic virus 1: recent knowledge about an ancient infection,” Lancet Infectious Diseases, vol. 7, no. 4, pp. 266–281, 2007.
[8]  K. Tajima, “The 4th nation-wide study of adult T-cell leukemia/lymphoma (ATL) in Japan: estimates of risk of ATL and its geographical and clinical features,” International Journal of Cancer, vol. 45, no. 2, pp. 237–243, 1990.
[9]  M. Osame, R. Janssen, H. Kubota et al., “Nationwide survey of HTLV-I-asscociated myelopathy in Japan: association with blood transfusion,” Annals of Neurology, vol. 28, no. 1, pp. 50–56, 1990.
[10]  M. Hisada, S. O. Stuver, A. Okayama et al., “Persistent paradox of natural history of human T lymphotropic virus type I: parallel analyses of Japanese and Jamaican carriers,” Journal of Infectious Diseases, vol. 190, no. 9, pp. 1605–1609, 2004.
[11]  M. Nakagawa, S. Izumo, S. Ijichi et al., “HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings,” Journal of Neurovirology, vol. 1, no. 1, pp. 50–61, 1995.
[12]  A. Kramer, E. M. Maloney, O. S. C. Morgan et al., “Risk factors and cofactors for human T-cell lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Jamaica,” American Journal of Epidemiology, vol. 142, no. 11, pp. 1212–1220, 1995.
[13]  G. de The and R. Bomford, “An HTLV-I vaccine: why, how, for whom?” AIDS Research and Human Retroviruses, vol. 9, no. 5, pp. 381–386, 1993.
[14]  T. Uchiyama, “Human T cell leukemia virus type I (HTLV-I) and human diseases,” Annual Review of Immunology, vol. 15, pp. 15–37, 1997.
[15]  F. A. Proietti, A. B. F. Carneiro-Proietti, B. C. Catalan-Soares, and E. L. Murphy, “Global epidemiology of HTLV-I infection and associated diseases,” Oncogene, vol. 24, no. 39, pp. 6058–6068, 2005.
[16]  D. F. Roucoux, B. Wang, D. Smith et al., “A prospective study of sexual transmission of human T lymphotropic virus (HTLV)-I and HTLV-II,” Journal of Infectious Diseases, vol. 191, no. 9, pp. 1490–1497, 2005.
[17]  S. Hino, K. Yamaguchi, and S. Katamine, “Mother-to-child transmission of human T-cell leukemia virus type-I,” Japanese Journal of Cancer Research, vol. 76, no. 6, pp. 474–480, 1985.
[18]  K. Kinoshita, T. Amagasaki, and S. Hino, “Milk-borne transmission of HTLV-I from carrier mothers to their children,” Japanese Journal of Cancer Research, vol. 78, no. 7, pp. 674–680, 1987.
[19]  S. J. Marriott and O. J. Semmes, “Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response,” Oncogene, vol. 24, no. 39, pp. 5986–5995, 2005.
[20]  S. Takeda, M. Maeda, S. Morikawa et al., “Genetic and epigenetic inactivation of TAX gene in adult t-cell leukemia cells,” International Journal of Cancer, vol. 109, no. 4, pp. 559–567, 2004.
[21]  G. Gaudray, F. Gachon, J. Basbous, M. Biard-Piechaczyk, C. Devaux, and J. M. Mesnard, “The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription,” Journal of Virology, vol. 76, no. 24, pp. 12813–12822, 2002.
[22]  Y. Satou, J. I. Yasunaga, M. Yoshida, and M. Matsuoka, “HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 3, pp. 720–725, 2006.
[23]  M. Saito, T. Matsuzaki, Y. Satou et al., “In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP),” Retrovirology, vol. 6, article 19, 2009.
[24]  Y. Satou, J.-I. Yasunaga, T. Zhao et al., “HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo,” PLoS Pathogens, vol. 7, no. 2, Article ID e1001274, 2011.
[25]  J. Fan, M. Guangyong, K. Nosaka et al., “APOBEC3G generates nonsense mutations in human T-cell leukemia virus type 1 proviral genomes in vivo,” Journal of Virology, vol. 84, no. 14, pp. 7278–7287, 2010.
[26]  M. Matsuoka and K. T. Jeang, “Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy,” Oncogene, vol. 30, pp. 1379–1389, 2011.
[27]  S. Izumo, F. Umehara, and M. Osame, “HTLV-I-associated myelopathy,” Neuropathology, vol. 20, pp. S65–S68, 2000.
[28]  M. M. Aye, E. Matsuoka, T. Moritoyo et al., “Histopathological analysis of four autopsy cases of HTLV-I-associated myelopathy/tropical spastic paraparesis: inflammatory changes occur simultaneously in the entire central nervous system,” Acta Neuropathologica, vol. 100, no. 3, pp. 245–252, 2000.
[29]  A. I. Bhigjee, P. L. A. Bill, C. A. Wiley et al., “Peripheral nerve lesions in HTLV-I associated myelopathy (HAM/TSP),” Muscle and Nerve, vol. 16, no. 1, pp. 21–26, 1993.
[30]  T. Kiwaki, F. Umehara, Y. Arimura et al., “The clinical and pathological features of peripheral neuropathy accompanied with HTLV-I associated myelopathy,” Journal of the Neurological Sciences, vol. 206, no. 1, pp. 17–21, 2003.
[31]  S. Olindo, P. Cabre, A. Lézin et al., “Natural history of human T-lymphotropic virus 1-associated myelopathy: a 14-year follow-up study,” Archives of Neurology, vol. 63, no. 11, pp. 1560–1566, 2006.
[32]  Y. Iwasaki, “Pathology of chronic myelopathy associated with HTLV-I infection (HAM/TSP),” Journal of the Neurological Sciences, vol. 96, no. 1, pp. 103–123, 1990.
[33]  A. Yoshioka, G. Hirose, Y. Ueda, Y. Nishimura, and K. Sakai, “Neuropathological studies of the spinal cord in early stage HTLV-I-associated myelopathy (HAM),” Journal of Neurology Neurosurgery and Psychiatry, vol. 56, no. 9, pp. 1004–1007, 1993.
[34]  S. Jacobson, “Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease,” Journal of Infectious Diseases, vol. 186, no. 2, pp. S187–S192, 2002.
[35]  N. Takenouchi, Y. Yamano, K. Usuku, M. Osame, and S. Izumo, “Usefulness of proviral load measurement for monitoring of disease activity in individual patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis,” Journal of NeuroVirology, vol. 9, no. 1, pp. 29–35, 2003.
[36]  M. Nagai, K. Usuku, W. Matsumoto et al., “Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP,” Journal of NeuroVirology, vol. 4, no. 6, pp. 586–593, 1998.
[37]  K. J. M. Jeffery, K. Usuku, S. E. Hall et al., “HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3848–3853, 1999.
[38]  A. Manns, W. J. Miley, R. J. Wilks et al., “Quantitative proviral DNA and antibody levels in the natural history of HTLV-I infection,” Journal of Infectious Diseases, vol. 180, no. 5, pp. 1487–1493, 1999.
[39]  V. Adaui, K. Verdonck, I. Best et al., “SYBR Green-based quantitation of human T-lymphotropic virus type 1 proviral load in Peruvian patients with neurological disease and asymptomatic carriers: influence of clinical status, sex, and familial relatedness,” Journal of NeuroVirology, vol. 12, no. 6, pp. 456–465, 2006.
[40]  A. H. Sabouri, M. Saito, K. Usuku et al., “Differences in viral and host genetic risk factors for development of human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis between Iranian and Japanese HTLV-1-infected individuals,” Journal of General Virology, vol. 86, no. 3, pp. 773–781, 2005.
[41]  K. J. M. Jeffery, A. A. Siddiqui, M. Bunce et al., “The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection,” Journal of Immunology, vol. 165, no. 12, pp. 7278–7284, 2000.
[42]  E. Hanon, S. Hall, G. P. Taylor et al., “Abundant Tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes,” Blood, vol. 95, no. 4, pp. 1386–1392, 2000.
[43]  A. M. Vine, A. G. Heaps, L. Kaftantzi et al., “The role of CTLs in persistent viral infection: cytolytic gene expression in CD8+ lymphocytes distinguishes between individuals with a high or low proviral load of human T cell lymphotropic virus type,” Journal of Immunology, vol. 173, no. 8, pp. 5121–5129, 2004.
[44]  T. Kattan, A. MacNamara, A. G. Rowan et al., “The avidity and lytic efficiency of the CTL response to HTLV-11,” Journal of Immunology, vol. 182, no. 9, pp. 5723–5729, 2009.
[45]  A. MacNamara, A. Rowan, S. Hilburn et al., “HLA class I binding of HBZ determines outcome in HTLV-1 infection,” PLoS Pathogens, vol. 6, no. 9, Article ID e01117, 2010.
[46]  Y. Furukawa, M. Yamashita, K. Usuku, S. Izumo, M. Nakagawa, and M. Osame, “Phylogenetic subgroups of human T cell lymphotropic virus (HTLV) type I in the tax gene and their association with different risks for HTLV-I-associated myelopathy/tropical spastic paraparesis,” Journal of Infectious Diseases, vol. 182, no. 5, pp. 1343–1349, 2000.
[47]  A. M. Vine, A. D. Witkover, A. L. Lloyd et al., “Polygenic control of human T lymphotropic virus type I (HTLV-I) provirus load and the risk of HTLV-I-associated myelopathy/tropical spastic paraparesis,” Journal of Infectious Diseases, vol. 186, no. 7, pp. 932–939, 2002.
[48]  D. Kodama, M. Saito, W. Matsumoto et al., “Longer dinucleotide repeat polymorphism in matrix metalloproteinase-9 (MMP-9) gene promoter which correlates with higher HTLV-I Tax mediated transcriptional activity influences the risk of HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP),” Journal of Neuroimmunology, vol. 156, no. 1-2, pp. 188–194, 2004.
[49]  A. H. Sabouri, M. Saito, A. L. Lloyd et al., “Polymorphism in the interleukin-10 promoter affects both provirus load and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis,” Journal of Infectious Diseases, vol. 190, no. 7, pp. 1279–1285, 2004.
[50]  N. A. Gillet, N. Malani, A. Melamed et al., “The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones,” Blood, vol. 117, no. 11, pp. 3113–3122, 2011.
[51]  F. Yu, Y. Itoyama, K. Fujihara, and I. Goto, “Natural killer (NK) cells in HTLV-I-associated myelopathy/tropical spastic prapareses-decrease in NK cell subset populations and activity in HTLV-I seropositive individuals,” Journal of Neuroimmunology, vol. 33, no. 2, pp. 121–128, 1991.
[52]  M. Saito, V. M. Braud, P. Goon et al., “Low frequency of CD94/NKG2A+ T lymphocytes in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis, but not in asymptomatic carriers,” Blood, vol. 102, no. 2, pp. 577–584, 2003.
[53]  K. Azakami, T. Sato, N. Araya et al., “Severe loss of invariant NKT cells exhibiting anti-HTLV-1 activity in patients with HTLV-1-associated disorders,” Blood, vol. 114, no. 15, pp. 3208–3215, 2009.
[54]  L. C. Ndhlovu, J. E. Snyder-Cappione, K. I. Carvalho et al., “Lower numbers of circulating natural killer T (NK T) cells in individuals with human T lymphotropic virus type 1 (HTLV-1) associated neurological disease,” Clinical and Experimental Immunology, vol. 158, no. 3, pp. 294–299, 2009.
[55]  T. Matsuzaki, M. Saito, K. Usuku et al., “A prospective uncontrolled trial of fermented milk drink containing viable Lactobacillus casei strain Shirota in the treatment of HTLV-1 associated myelopathy/tropical spastic paraparesis,” Journal of the Neurological Sciences, vol. 237, no. 1-2, pp. 75–81, 2005.
[56]  J. A. Sakai, M. Nagai, M. B. Brennan, C. A. Mora, and S. Jacobson, “In vitro spontaneous lymphoproliferation in patients with human T-cell lymphotropic virus type I-associated neurologic disease: predominant expansion of CD8+ T cells,” Blood, vol. 98, no. 5, pp. 1506–1511, 2001.
[57]  P. J. Norris, D. F. Hirschkorn, D. A. Devita, T. H. Lee, and E. L. Murphy, “Human T cell leukemia virus type 1 infection drives spontaneous proliferation of natural killer cells,” Virulence, vol. 1, no. 1, pp. 19–28, 2010.
[58]  Y. Itoyama, S. Minato, J. Kira et al., “Spontaneous proliferation of peripheral blood lymphocytes increased in patients with HTLV-I-associated myelopathy,” Neurology, vol. 38, no. 8, pp. 1302–1307, 1988.
[59]  S. Ijichi, N. Eiraku, M. Osame et al., “In vitro modulation of lymphocyte proliferation by prednisolone and interferon-α in patients with HTLV-I-associated myelopathy (HAM),” Journal of Neuroimmunology, vol. 23, no. 2, pp. 175–178, 1989.
[60]  C. E. Samuel, “Antiviral actions of interferons,” Clinical Microbiology Reviews, vol. 14, no. 4, pp. 778–809, 2001.
[61]  S. Y. Liu, D. J. Sanchez, and G. Cheng, “New developments in the induction and antiviral effectors of type I interferon,” Current Opinion in Immunology, vol. 23, pp. 57–64, 2011.
[62]  Y. Kuroda, K. Kurohara, F. Fujiyama et al., “Systemic interferon-alpha in the treatment of HTLV-I-associated myelopathy,” Acta Neurologica Scandinavica, vol. 86, no. 1, pp. 82–86, 1992.
[63]  S. Izumo, I. Goto, Y. Itoyama et al., “Interferon-alpha is effective in HTLV-I-associated myelopathy: a multicenter, randomized, double-blind, controlled trial,” Neurology, vol. 46, no. 4, pp. 1016–1021, 1996.
[64]  A. Bazarbachi, Y. Plumelle, J. Carlos Ramos et al., “Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes,” Journal of Clinical Oncology, vol. 28, no. 27, pp. 4177–4183, 2010.
[65]  S. Kinpara, A. Hasegawa, A. Utsunomiya et al., “Stromal cell-mediated suppression of human T-cell leukemia virus type 1 expression in vitro and in vivo by type I interferon,” Journal of Virology, vol. 83, no. 10, pp. 5101–5108, 2009.
[66]  M. C. Levin, S. M. Lee, F. Kalume et al., “Autoimmunity due to molecular mimicry as a cause of neurological disease,” Nature Medicine, vol. 8, no. 5, pp. 509–513, 2002.
[67]  M. Yukitake, E. Sueoka, N. Sueoka-Aragane et al., “Significantly increased antibody response to heterogeneous nuclear ribonucleoproteins in cerebrospinal fluid of multiple sclerosis patients but not in patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis,” Journal of NeuroVirology, vol. 14, no. 2, pp. 130–135, 2008.
[68]  G. Dreyfuss, M. J. Matunis, S. Pi?ol-Roma, and C. G. Burd, “hnRNP proteins and the biogenesis of mRNA,” Annual Review of Biochemistry, vol. 62, pp. 289–321, 1993.
[69]  S. Ishihara, A. Okayama, S. Stuver et al., “Association of HTLV-I antibody profile of asymptomatic carriers with proviral DNA levels of peripheral blood mononuclear cells,” Journal of Acquired Immune Deficiency Syndromes, vol. 7, no. 2, pp. 199–203, 1994.
[70]  J. Kira, M. Nakamura, T. Sawada et al., “Antibody titers to HTLV-I-p40(tax) protein and gag-env hybrid protein in HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with increased HTLV-I proviral DNA load,” Journal of the Neurological Sciences, vol. 107, no. 1, pp. 98–104, 1991.
[71]  K. Nagasato, T. Nakamura, S. Shirabe et al., “Presence of serum anti-human T-lymphotropic virus type I (HTLV-I) IgM antibodies means persistent active replication of HTLV-I in HTLV-I-associated myelopathy,” Journal of the Neurological Sciences, vol. 103, no. 2, pp. 203–208, 1991.
[72]  R. B. Lal, C. Z. Giam, J. E. Coligan, and D. L. Rudolph, “Differential immune responsiveness to the immunodominant epitopes of regulatory proteins (tax and rex) in human T cell lymphotropic virus type I-associated myelopathy,” Journal of Infectious Diseases, vol. 169, no. 3, pp. 496–503, 1994.
[73]  T. Kiyokawa, H. Yoshikura, and S. Hattori, “Envelope proteins of human T-cell leukemia virus: expression in Escherichia coli and its application to studies of env gene functions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 19, pp. 6202–6206, 1984.
[74]  H. Nakamura, M. Hayami, Y. Ohta et al., “Protection of cynomolgus monkeys against infection by human T-cell leukemia virus type-I by immunization with viral env gene products produced in Escherichia coli,” International Journal of Cancer, vol. 40, no. 3, pp. 403–407, 1987.
[75]  H. Shida, T. Tochikura, T. Sato et al., “Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection,” The EMBO Journal, vol. 6, no. 11, pp. 3379–3384, 1987.
[76]  E. Hakoda, H. Machida, Y. Tanaka et al., “Vaccination of rabbits with recombinant vaccinia virus carrying the envelope gene of human T-cell lymphotropic virus type 1,” International Journal of Cancer, vol. 60, no. 4, pp. 567–570, 1995.
[77]  Y. Tanaka, R. Tanaka, E. Terada et al., “Induction of antibody responses that neutralize human T-cell leukemia virus type I infection in vitro and in vivo by peptide immunization,” Journal of Virology, vol. 68, no. 10, pp. 6323–6331, 1994.
[78]  Y. Tanaka, K. Ishii, T. Sawada et al., “Prophylaxis against a Melanesian variant of human T-lymphotropic virus type I (HTLV-I) in rabbits using HTLV-I immune globulin from asymptomatically infected Japanese carriers,” Blood, vol. 82, no. 12, pp. 3664–3667, 1993.
[79]  N. Murata, E. Hakoda, H. Machida et al., “Prevention of human T cell lymphotropic virus type I infection in Japanese macaques by passive immunization,” Leukemia, vol. 10, no. 12, pp. 1971–1974, 1996.
[80]  C. R. M. Bangham, “The immune response to HTLV-I,” Current Opinion in Immunology, vol. 12, no. 4, pp. 397–402, 2000.
[81]  S. Hilburn, A. Rowan, M.-A. Demontis et al., “In vivo expression of human T-lymphotropic virus type 1 basic leucine-zipper protein generates specific CD8+ and CD4+ T-lymphocyte responses that correlate with clinical outcome,” Journal of Infectious Diseases, vol. 203, no. 4, pp. 529–536, 2011.
[82]  T. F. Greten, J. E. Slansky, R. Kubota et al., “Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8+ T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7568–7573, 1998.
[83]  M. Nagai, R. Kubota, T. F. Greten, J. P. Schneck, T. P. Leist, and S. Jacobson, “Increased activated human T cell lymphotropic virus type I (HTLV-I) Tax11-19-specific memory and effector CD8+ cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with HTLV-I provirus load,” Journal of Infectious Diseases, vol. 183, no. 2, pp. 197–205, 2001.
[84]  R. Kubota, T. Kawanishi, H. Matsubara, A. Manns, and S. Jacobson, “Demonstration of human T lymphotropic virus type I (HTLV-I) tax-specific CD8+ lymphocytes directly in peripheral blood of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by intracellular cytokine detection,” Journal of Immunology, vol. 161, no. 1, pp. 482–488, 1998.
[85]  A. H. Sabouri, K. Usuku, D. Hayashi et al., “Impaired function of human T-lymphotropic virus type 1 (HTLV-1) specific CD8+ T cells in HTLV-1 associated neurologic disease,” Blood, vol. 112, no. 6, pp. 2411–2420, 2008.
[86]  P. Klenerman and R. M. Zinkernagel, “What can we learn about human immunodeficiency virus infection from a study of lymphocytic choriomeningitis virus?” Immunological Reviews, vol. 159, pp. 5–16, 1997.
[87]  B. Kitze, K. Usuku, Y. Yamano et al., “Human CD4+ T lymphocytes recognize a highly conserved epitope of human T lymphotropic virus type 1 (HTLV-1) env gp21 restricted by HLA DRB1*0101,” Clinical and Experimental Immunology, vol. 111, no. 2, pp. 278–285, 1998.
[88]  P. K. C. Goon, T. Igakura, E. Hanon et al., “Human T cell lymphotropic virus type I (HTLV-I)-Specific CD4+ T Cells: immunodominance hierarchy and preferential infection with HTLV-I,” Journal of Immunology, vol. 172, no. 3, pp. 1735–1743, 2004.
[89]  M. Kannagi, S. Harada, I. Maruyama et al., “Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells,” International Immunology, vol. 3, no. 8, pp. 761–767, 1991.
[90]  S. Jacobson, H. Shida, D. E. McFarlin, A. S. Fauci, and S. Koenig, “Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease,” Nature, vol. 348, no. 6298, pp. 245–248, 1990.
[91]  P. K. C. Goon, A. Biancardi, N. Fast et al., “Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy,” Journal of Infectious Diseases, vol. 189, no. 12, pp. 2294–2298, 2004.
[92]  H. Nose, R. Kubota, N. P. Seth et al., “Ex vivo analysis of human T lymphotropic virus type 1-specific CD4+ cells by use of a major histocompatibility complex class II tetramer composed of a neurological disease-susceptibility allele and its immunodominant peptide,” Journal of Infectious Diseases, vol. 196, no. 12, pp. 1761–1772, 2007.
[93]  P. K. C. Goon, E. Hanon, T. Igakura et al., “High frequencies of Th1-type CD4+ T cells specific to HTLV-1 Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis,” Blood, vol. 99, no. 9, pp. 3335–3341, 2002.
[94]  P. K. C. Goon, T. Igakura, E. Hanon et al., “High circulating frequencies of tumor necrosis factor alpha- and interleukin-2-secreting human T-lymphotropic virus type 1 (HTLV-1)-specific CD4+ T cells in patients with HTLV-1-associated neurological disease,” Journal of Virology, vol. 77, no. 17, pp. 9716–9722, 2003.
[95]  M. Saito, G. P. Taylor, A. Saito et al., “In vivo selection of T-cell receptor junctional region sequences by HLA-A2 human T-cell lymphotropic virus type 1 Tax11-19 peptide complexes,” Journal of Virology, vol. 75, no. 2, pp. 1065–1071, 2001.
[96]  M. Saito, I. Higuchi, A. Saito et al., “Molecular analysis of T cell clonotypes in muscle-infiltrating lymphocytes from patients with human T lymphotropic virus type 1 polymyositis,” Journal of Infectious Diseases, vol. 186, no. 9, pp. 1231–1241, 2002.
[97]  Y. Yamano, N. Takenouchi, H. C. Li et al., “Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1361–1368, 2005.
[98]  S. Sakaguchi, M. Ono, R. Setoguchi et al., “Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease,” Immunological Reviews, vol. 212, pp. 8–27, 2006.
[99]  U. Oh, C. Grant, C. Griffith, K. Fugo, N. Takenouchi, and S. Jacobson, “Reduced Foxp3 protein expression is associated with inflammatory disease during human T lymphotropic virus type 1 infection,” Journal of Infectious Diseases, vol. 193, no. 11, pp. 1557–1566, 2006.
[100]  J. Inoue, M. Seiki, T. Taniguchi, S. Tsuru, and M. Yoshida, “Induction of interleukin 2 receptor gene expression by p40x encoded by human T-cell leukemia virus type 1,” The EMBO Journal, vol. 5, no. 11, pp. 2883–2888, 1986.
[101]  D. Hayashi, R. Kubota, N. Takenouchi et al., “Reduced Foxp3 expression with increased cytomegalovirus-specific CTL in HTLV-I-associated myelopathy,” Journal of Neuroimmunology, vol. 200, no. 1-2, pp. 115–124, 2008.
[102]  F. Toulza, A. Heaps, Y. Tanaka, G. P. Taylor, and C. R. M. Bangham, “High frequency of CD4+FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-l-specific CTL response,” Blood, vol. 111, no. 10, pp. 5047–5053, 2008.
[103]  I. Best, G. López, K. Verdonck et al., “IFN-β production in response to Tax 161-233, and frequency of CD4+ Foxp3+ and Lin- HLA-DRhigh CD123+ cells, discriminate HAM/TSP patients from asymptomatic HTLV-1-carriers in a Peruvian population,” Immunology, vol. 128, no. 1, pp. e777–e786, 2009.
[104]  F. Toulza, K. Nosaka, Y. Tanaka et al., “Human T-lymphotropic virus type 1-induced CC chemokine ligand 22 maintains a high frequency of functional FoxP3+ regulatory T cells,” Journal of Immunology, vol. 185, no. 1, pp. 183–189, 2010.
[105]  D. Hayashi, R. Kubota, N. Takenouchi et al., “Accumulation of human T-lymphotropic virus type I (HTLV-I)-infected cells in the cerebrospinal fluid during the exacerbation of HTLV-I-associated myelopathy,” Journal of NeuroVirology, vol. 14, no. 5, pp. 459–463, 2008.
[106]  S. E. Macatonia, J. K. Cruickshank, P. Rudge, and S. C. Knight, “Dendritic cells from patients with tropical spastic paraparesis are infected with HTLV-1 and stimulate autologous lymphocyte proliferation,” AIDS Research and Human Retroviruses, vol. 8, no. 9, pp. 1699–1706, 1992.
[107]  M. Makino, A. Utsunomiya, Y. Maeda, S. Shimokubo, S. Izumo, and M. Baba, “Association of CD40 ligand expression on HTLV-I-infected T cells and maturation of dendritic cells,” Scandinavian Journal of Immunology, vol. 54, no. 6, pp. 574–581, 2001.
[108]  M. Makino, M. Azuma, S.-I. Wakamatsu et al., “Marked suppression of T cells by a benzothiophene derivative in patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis,” Clinical and Diagnostic Laboratory Immunology, vol. 6, no. 3, pp. 316–322, 1999.
[109]  K. S. Jones, C. Petrow-Sadowski, Y. K. Huang, D. C. Bertolette, and F. W. Ruscetti, “Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4+ T cells,” Nature Medicine, vol. 14, no. 4, pp. 429–436, 2008.
[110]  P. Jain, S. L. Manuel, Z. K. Khan, J. Ahuja, K. Quann, and B. Wigdahl, “DC-SIGN mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells,” Journal of Virology, vol. 83, no. 21, pp. 10908–10921, 2009.
[111]  S. L. Manuel, T. D. Schell, E. Acheampong, S. Rahman, Z. K. Khan, and P. Jain, “Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease,” Journal of Leukocyte Biology, vol. 86, no. 5, pp. 1205–1216, 2009.
[112]  S. Rahman, S. L. Manuel, Z. K. Khan et al., “Depletion of dendritic cells enhances susceptibility to cell-free infection of human T cell leukemia virus type 1 in CD11c-diphtheria toxin receptor transgenic mice,” Journal of Immunology, vol. 184, no. 10, pp. 5553–5561, 2010.
[113]  S. Rahman, Z. K. Khan, B. Wigdahl, S. R. Jennings, F. Tangy, and P. Jain, “Murine FLT3 ligand-derived dendritic cell-mediated early immune responses are critical to controlling cell-free human T cell leukemia virus type 1 infection,” Journal of Immunology, vol. 186, no. 1, pp. 390–402, 2011.
[114]  C. R. Nascimento, M. A. Lima, M. J. D. A. Serpa, O. Espindola, A. C. C. Leite, and J. Echevarria-Lima, “Monocytes from HTLV-1-infected patients are unable to fully mature into dendritic cells,” Blood, vol. 117, no. 2, pp. 489–499, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133