全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of a Novel P190-Derived Breakpoint Peptide Suitable for Peptide Vaccine Therapeutic Approach in Ph+ Acute Lymphoblastic Leukemia Patients

DOI: 10.1155/2012/150651

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ph+ acute lymphoblastic leukemia (Ph+ ALL) is a high-risk acute leukemia with poor prognosis, in which the specific t(9;22)(q34;q11) translocation results in a chimeric bcr-abl (e1a2 breakpoint) and in a 190?KD protein (p190) with constitutive tyrosine kinase activity. The advent of first- and second-generation tyrosine kinase inhibitors (TKIs) improved the short-term outcome of Ph+ ALL patients not eligible for allo-SCT; yet disease recurrence is almost inevitable. Peptides derived from p190-breakpoint area are leukemia-specific antigens that may mediate an antitumor response toward p190+ leukemia cells. We identified one peptide named p190-13 able to induce in vitro peptide-specific CD4+ T cell proliferation in Ph+ ALL patients in complete remission during TKIs. Thus this peptide appears a good candidate for developing an immune target vaccine strategy possibly synergizing with TKIs for remission maintenance. 1. Introduction Philadelphia positive acute lymphoblastic leukemia (Ph+ ALL) is a high-risk, aggressive form of acute leukemia, affecting primarily adults and the elderly. The hallmark of this disease is the presence in all leukemia cells of a reciprocal translocation termed t(9; 22)(q34; q11) resulting in a chimeric bcr-abl (e1a2 breakpoint) fusion gene that encodes a 190?KD protein (p190) with constitutively active tyrosine kinase activity that can alter multiple signaling pathways, contributing to tumor growth and proliferation. Before the advent of tyrosine kinase inhibitors (TKIs), the outcome of Ph+ ALL patients not eligible for allogeneic stem cell transplant (allo-SCT) was characterized by an extremely poor prognosis, a weak response to most chemotherapy combinations, short remission durations, and poor survival rates. The introduction of imatinib, a selective inhibitor of the ABL tyrosine kinase, has revolutionized the treatment and the outcome of this subset of patients [1]. However, a substantial proportion of imatinib-treated Ph+ ALL patients develop resistance to imatinib. Second-generation TKIs have demonstrated promising efficacy in the treatment of imatinib-resistant Ph+ ALL patients, but despite these results, the relapse rate of Ph+ ALL patients remains very high with an overall survival still unsatisfactory [2]. The persistence of a measurable residual disease at molecular level appears to be the key issue for treatment failure [3–5]. The development of alternative strategies that could selectively target Ph+ ALL cells and synergistically work in combination with TKI may have a crucial impact on disease control and ultimately

References

[1]  R. Kurzrock, H. M. Kantarjian, B. J. Druker, and M. Talpaz, “Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics,” Annals of Internal Medicine, vol. 138, no. 10, pp. 819–830, 2003.
[2]  H. J. Lee, J. E. Thompson, E. S. Wang, and M. Wetzler, “Philadelphia chromosome-positive acute lymphoblastic leukemia,” Cancer, vol. 117, no. 8, pp. 1583–1594, 2011.
[3]  P. P. Piccaluga, G. Martinelli, M. Rondoni, G. Visani, and M. Baccarani, “Advances and potential treatment for Philadelphia chromosome-positive adult acute lymphoid leukaemia,” Expert Opinion on Biological Therapy, vol. 6, no. 10, pp. 1011–1022, 2006.
[4]  G. G. Laport, J. C. Alvarnas, J. M. Palmer et al., “Long-term remission of Philadelphia chromosome-positive acute ymphoblastic leukemia after allogeneic hematopoietic cell transplantation from matched sibling donors: a 20-year experience with the fractionated total body irradiation-etoposide regimen,” Blood, vol. 112, no. 3, pp. 903–909, 2008.
[5]  R. Foà, A. Vitale, A. Guarini, et al., “Dasatinib as front line treatment of adult Ph+ acute lymphoblastic leukemia (ALL) patients. Final results of the GIMEMA LAL1205 study,” Blood, vol. 112, artilce 305, 2008.
[6]  G. Riva, M. Luppi, P. Barozzi et al., “Emergence of BCR-ABL-specific cytotoxic T cells in the bone marrow of patients with Ph+ acute lymphoblastic leukemia during long-term imatinib mesylate treatment,” Blood, vol. 115, no. 8, pp. 1512–1518, 2010.
[7]  M. Bocchia, S. Gentili, E. Abruzzese et al., “Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial,” The Lancet, vol. 365, no. 9460, pp. 657–662, 2005.
[8]  M. Bocchia, M. Tassi, M. Ippoliti, et al., “CMLVAX100 peptide vaccinations induce peptide specific “cytotoxic“ CD4+ T cells (CD4+CTLs) in chronic myeloid leukemia patients: new insights about peptide vaccine-mediated antitumor response,” Blood, vol. 112, article 3209, 2008.
[9]  H.-G. Rammensee, J. Bachmann, N. P. N. Emmerich, O. A. Bachor, and S. Stevanovi?, “SYFPEITHI: database for MHC ligands and peptide motifs,” Immunogenetics, vol. 50, no. 3-4, pp. 213–219, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133