全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exercise Benefits Brain Function: The Monoamine Connection

DOI: 10.3390/brainsci3010039

Keywords: exercise, brain function, monoamine

Full-Text   Cite this paper   Add to My Lib

Abstract:

The beneficial effects of exercise on brain function have been demonstrated in animal models and in a growing number of clinical studies on humans. There are multiple mechanisms that account for the brain-enhancing effects of exercise, including neuroinflammation, vascularization, antioxidation, energy adaptation, and regulations on neurotrophic factors and neurotransmitters. Dopamine (DA), noradrenaline (NE), and serotonin (5-HT) are the three major monoamine neurotransmitters that are known to be modulated by exercise. This review focuses on how these three neurotransmitters contribute to exercise affecting brain function and how it can work against neurological disorders.

References

[1]  Meeusen, R. Exercise and the brain: Insight in new therapeutic modalities. Ann. Transplant. 2005, 10, 49–51.
[2]  Knochel, C.; Oertel-Knochel, V.; O’Dwyer, L.; Prvulovic, D.; Alves, G.; Kollmann, B.; Hampel, H. Cognitive and behavioural effects of physical exercise in psychiatric patients. Prog. Neurobiol. 2012, 96, 46–68, doi:10.1016/j.pneurobio.2011.11.007.
[3]  Tordeurs, D.; Janne, P.; Appart, A.; Zdanowicz, N.; Reynaert, C. Effectiveness of physical exercise in psychiatry: A therapeutic approach? Encephale 2011, 37, 345–352, doi:10.1016/j.encep.2011.02.003.
[4]  Wolff, E.; Gaudlitz, K.; von Lindenberger, B.L.; Plag, J.; Heinz, A.; Strohle, A. Exercise and physical activity in mental disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2011, 261, S186–S191, doi:10.1007/s00406-011-0254-y.
[5]  Carek, P.J.; Laibstain, S.E.; Carek, S.M. Exercise for the treatment of depression and anxiety. Int. J. Psychiatry Med. 2011, 41, 15–28, doi:10.2190/PM.41.1.c.
[6]  Dinas, P.C.; Koutedakis, Y.; Flouris, A.D. Effects of exercise and physical activity on depression. Ir. J. Med. Sci. 2011, 180, 319–325, doi:10.1007/s11845-010-0633-9.
[7]  Alsuwaidan, M.T.; Kucyi, A.; Law, C.W.; McIntyre, R.S. Exercise and bipolar disorder: A review of neurobiological mediators. Neuromolecular Med. 2009, 11, 328–336, doi:10.1007/s12017-009-8079-9.
[8]  Archer, T. Influence of physical exercise on traumatic brain injury deficits: Scaffolding effect. Neurotox. Res. 2012, 21, 418–434, doi:10.1007/s12640-011-9297-0.
[9]  Lojovich, J.M. The relationship between aerobic exercise and cognition: Is movement medicinal? J. Head Trauma Rehabil. 2010, 25, 184–192, doi:10.1097/HTR.0b013e3181dc78cd.
[10]  Devine, J.M.; Zafonte, R.D. Physical exercise and cognitive recovery in acquired brain injury: A review of the literature. Phys. Med. Rehabil. 2009, 1, 560–575.
[11]  Achiron, A.; Kalron, A. Physical activity: Positive impact on brain plasticity. Harefuah 2008, 147, 252–255.
[12]  Vaynman, S.; Gomez-Pinilla, F. License to run: Exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil. Neural Repair 2005, 19, 283–295, doi:10.1177/1545968305280753.
[13]  Smith, A.D.; Zigmond, M.J. Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp. Neurol. 2003, 184, 31–39, doi:10.1016/j.expneurol.2003.08.017.
[14]  Hubert, M. Physical therapy for Parkinson’s disease. Rev. Med. Brux. 2011, 32, 388–392.
[15]  Ahlskog, J.E. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 2011, 77, 288–294, doi:10.1212/WNL.0b013e318225ab66.
[16]  Radak, Z.; Hart, N.; Sarga, L.; Koltai, E.; Atalay, M.; Ohno, H.; Boldogh, I. Exercise plays a preventive role against Alzheimer’s disease. J. Alzheimers Dis. 2010, 20, 777–783.
[17]  Rolland, Y.; Abellan van Kan, G.; Vellas, B. Physical activity and Alzheimer’s disease: From prevention to therapeutic perspectives. J. Am. Med. Dir. Assoc. 2008, 9, 390–405, doi:10.1016/j.jamda.2008.02.007.
[18]  Yu, F.; Kolanowski, A.M.; Strumpf, N.E.; Eslinger, P.J. Improving cognition and function through exercise intervention in Alzheimer’s disease. J. Nurs. Scholarsh. 2006, 38, 358–365, doi:10.1111/j.1547-5069.2006.00127.x.
[19]  Leeuwenburgh, C.; Heinecke, J.W. Oxidative stress and antioxidants in exercise. Curr. Med. Chem. 2001, 8, 829–838, doi:10.2174/0929867013372896.
[20]  Parise, G.; Phillips, S.M.; Kaczor, J.J.; Tarnopolsky, M.A. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic. Biol. Med. 2005, 39, 289–295, doi:10.1016/j.freeradbiomed.2005.03.024.
[21]  Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002, 25, 295–301, doi:10.1016/S0166-2236(02)02143-4.
[22]  Carro, E.; Nunez, A.; Busiguina, S.; Torres-Aleman, I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 2000, 20, 2926–2933.
[23]  Nicklas, B.J.; Hsu, F.C.; Brinkley, T.J.; Church, T.; Goodpaster, B.H.; Kritchevsky, S.B.; Pahor, M. Exercise training and plasma C-reactive protein and interleukin-6 in elderly people. J. Am. Geriatr. Soc. 2008, 56, 2045–2052, doi:10.1111/j.1532-5415.2008.01994.x.
[24]  Pedersen, B.K.; Bruunsgaard, H.; Ostrowski, K.; Krabbe, K.; Hansen, H.; Krzywkowski, K.; Toft, A.; Sondergaard, S.R.; Petersen, E.W.; Ibfelt, T.; Schjerling, P. Cytokines in aging and exercise. Int. J. Sports Med. 2000, 21, S4–S9, doi:10.1055/s-2000-1444.
[25]  Van Praag, H. Exercise and the brain: Something to chew on. Trends Neurosci. 2009, 32, 283–290, doi:10.1016/j.tins.2008.12.007.
[26]  Acworth, I.; Nicholass, J.; Morgan, B.; Newsholme, E.A. Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochem. Biophys. Res. Commun. 1986, 137, 149–153, doi:10.1016/0006-291X(86)91188-5.
[27]  Newsholme, E.A.; Acworth, I.N.; Blomstrand, E. Amino Acid,Brain Neurotransmitters and a Functional Link between Muscle and Brain That Is Important in Sustained Exercise; John Libbey Eurotext Ltd.: London, UK, 1987.
[28]  Caperuto, E.C.; dos Santos, R.V.; Mello, M.T.; Costa Rosa, L.F. Effect of endurance training on hypothalamic serotonin concentration and performance. Clin. Exp. Pharmacol. Physiol. 2009, 36, 189–191, doi:10.1111/j.1440-1681.2008.05111.x.
[29]  Blomstrand, E. A role for branched-chain amino acids in reducing central fatigue. J. Nutr. 2006, 136, 544–547.
[30]  Meeusen, R.; Watson, P.; Dvorak, J. The brain and fatigue: new opportunities for nutritional interventions? J. Sports Sci. 2006, 24, 773–782, doi:10.1080/02640410500483022.
[31]  Meeusen, R.; Watson, P.; Hasegawa, H.; Roelands, B.; Piacentini, M.F. Central fatigue: The serotonin hypothesis and beyond. Sports Med. 2006, 36, 881–909, doi:10.2165/00007256-200636100-00006.
[32]  Fernstrom, J.D.; Fernstrom, M.H. Exercise, serum free tryptophan, and central fatigue. J. Nutr. 2006, 136, 553–559.
[33]  Newsholme, E.A.; Blomstrand, E. Branched-chain amino acids and central fatigue. J. Nutr. 2006, 136, 274–276.
[34]  Yang, D.S.; Liu, X.L.; Qiao, D.C. Dynamic changes of 5-HT, DA and their metabolin in rat striatum during exhaustive exercise and recovery (in Chinese). Zhongguo Ying Yong Sheng Li Xue Za Zhi 2011, 27, 432–436.
[35]  Leite, L.H.; Rodrigues, A.G.; Soares, D.D.; Marubayashi, U.; Coimbra, C.C. Central fatigue induced by losartan involves brain serotonin and dopamine content. Med. Sci. Sports Exerc. 2010, 42, 1469–1476, doi:10.1249/MSS.0b013e3181d03d36.
[36]  Meeusen, R.; Watson, P. Amino acids and the brain: Do they play a role in “central fatigue”? Int. J. Sport Nutr. Exerc. Metab. 2007, 17, S37–S46.
[37]  Jacobs, I.; Bell, D.G. Effects of acute modafinil ingestion on exercise time to exhaustion. Med. Sci. Sports Exerc. 2004, 36, 1078–1082, doi:10.1249/01.MSS.0000128146.12004.4F.
[38]  Foley, T.E.; Fleshner, M. Neuroplasticity of dopamine circuits after exercise: Implications for central fatigue. Neuromolecular Med. 2008, 10, 67–80, doi:10.1007/s12017-008-8032-3.
[39]  Guszkowska, M. Effects of exercise on anxiety, depression and mood. Psychiatr. Pol. 2004, 38, 611–620.
[40]  Fernandez, H.H. Updates in the medical management of Parkinson disease. Cleve. Clin. J. Med. 2012, 79, 28–35, doi:10.3949/ccjm.78gr.11005.
[41]  Albrecht, F.E.; Xu, J.; Moe, O.W.; Hopfer, U.; Simonds, W.F.; Orlowski, J.; Jose, P.A. Regulation of NHE3 activity by G protein subunits in renal brush-border membranes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R1064–R1073.
[42]  Hussain, T.; Lokhandwala, M.F. Renal dopamine DA1 receptor coupling with G(S) and G(q/11) proteins in spontaneously hypertensive rats. Am. J. Physiol. 1997, 272, F339–F346.
[43]  Jaber, M.; Robinson, S.W.; Missale, C.; Caron, M.G. Dopamine receptors and brain function. Neuropharmacology 1996, 35, 1503–1519.
[44]  Sidhu, A.; Niznik, H.B. Coupling of dopamine receptor subtypes to multiple and diverse G proteins. Int. J. Dev. Neurosci. 2000, 18, 669–677, doi:10.1016/S0736-5748(00)00033-2.
[45]  Calabresi, P.; Picconi, B.; Tozzi, A.; di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 2007, 30, 211–219, doi:10.1016/j.tins.2007.03.001.
[46]  Calabresi, P.; Pisani, A.; Centonze, D.; Bernardi, G. Role of dopamine receptors in the short- and long-term regulation of corticostriatal transmission. Nihon Shinkei Seishin Yakurigaku Zasshi 1997, 17, 101–104.
[47]  Bagetta, V.; Ghiglieri, V.; Sgobio, C.; Calabresi, P.; Picconi, B. Synaptic dysfunction in Parkinson’s disease. Biochem. Soc. Trans. 2010, 38, 493–497, doi:10.1042/BST0380493.
[48]  Lovinger, D.M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 2010, 58, 951–961, doi:10.1016/j.neuropharm.2010.01.008.
[49]  Wilson, C.J. Striatal D2 receptors and LTD: Yes, but not where you thought they were. Neuron 2006, 50, 347–348, doi:10.1016/j.neuron.2006.04.023.
[50]  Chen, Z.; Ito, K.; Fujii, S.; Miura, M.; Furuse, H.; Sasaki, H.; Kaneko, K.; Kato, H.; Miyakawa, H. Roles of dopamine receptors in long-term depression: Enhancement via D1 receptors and inhibition via D2 receptors. Receptors Channels 1996, 4, 1–8.
[51]  Bouret, S.; Sara, S.J. Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 2005, 28, 574–582, doi:10.1016/j.tins.2005.09.002.
[52]  Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 2003, 42, 33–84.
[53]  Piascik, M.T.; Perez, D.M. Alpha1-adrenergic receptors: New insights and directions. J. Pharmacol. Exp. Ther. 2001, 298, 403–410.
[54]  Hertz, L.; Peng, L.; Dienel, G.A. Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab. 2007, 27, 219–249, doi:10.1038/sj.jcbfm.9600343.
[55]  Ma, Y.C.; Huang, X.Y. Novel signaling pathway through the beta-adrenergic receptor. Trends Cardiovasc. Med. 2002, 12, 46–49, doi:10.1016/S1050-1738(01)00138-4.
[56]  Graeff, F.G.; Guimaraes, F.S.; de Andrade, T.G.; Deakin, J.F. Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 1996, 54, 129–141, doi:10.1016/0091-3057(95)02135-3.
[57]  Owens, M.J.; Nemeroff, C.B. Role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clin. Chem. 1994, 40, 288–295.
[58]  Asarnow, J.R.; Emslie, G.; Clarke, G.; Wagner, K.D.; Spirito, A.; Vitiello, B.; Iyengar, S.; Shamseddeen, W.; Ritz, L.; McCracken, J.; et al. Treatment of selective serotonin reuptake inhibitor-resistant depression in adolescents: Predictors and moderators of treatment response. J. Am. Acad. Child. Adolesc. Psychiatry 2009, 48, 330–339.
[59]  Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 2002, 71, 533–554, doi:10.1016/S0091-3057(01)00746-8.
[60]  Lopez-Figueroa, A.L.; Norton, C.S.; Lopez-Figueroa, M.O.; Armellini-Dodel, D.; Burke, S.; Akil, H.; Lopez, J.F.; Watson, S.J. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol. Psychiatry 2004, 55, 225–233, doi:10.1016/j.biopsych.2003.09.017.
[61]  De Vry, J. 5-HT1A receptor agonists: Recent developments and controversial issues. Psychopharmacology (Berl.) 1995, 121, 1–26, doi:10.1007/BF02245588.
[62]  Murrough, J.W.; Neumeister, A. The serotonin 1B receptor: A new target for depression therapeutics? Biol. Psychiatry 2011, 69, 714–715, doi:10.1016/j.biopsych.2011.02.020.
[63]  Watson, J.M.; Dawson, L.A. Characterization of the potent 5-HT(1A/B) receptor antagonist and serotonin reuptake inhibitor SB-649915: Preclinical evidence for hastened onset of antidepressant/anxiolytic efficacy. CNS Drug Rev. 2007, 13, 206–223, doi:10.1111/j.1527-3458.2007.00012.x.
[64]  Moret, C.; Briley, M. The possible role of 5-HT(1B/D) receptors in psychiatric disorders and their potential as a target for therapy. Eur. J. Pharmacol. 2000, 404, 1–12, doi:10.1016/S0014-2999(00)00581-1.
[65]  Ebdrup, B.H.; Rasmussen, H.; Arnt, J.; Glenthoj, B. Serotonin 2A receptor antagonists for treatment of schizophrenia. Expert Opin. Investig. Drugs 2011, 20, 1211–1223, doi:10.1517/13543784.2011.601738.
[66]  Tiwari, A.K.; Souza, R.P.; Muller, D.J. Pharmacogenetics of anxiolytic drugs. J. Neural Transm. 2009, 116, 667–677, doi:10.1007/s00702-009-0229-6.
[67]  Berg, K.A.; Harvey, J.A.; Spampinato, U.; Clarke, W.P. Physiological and therapeutic relevance of constitutive activity of 5-HT 2A and 5-HT 2C receptors for the treatment of depression. Prog. Brain Res. 2008, 172, 287–305, doi:10.1016/S0079-6123(08)00914-X.
[68]  Adell, A.; Castro, E.; Celada, P.; Bortolozzi, A.; Pazos, A.; Artigas, F. Strategies for producing faster acting antidepressants. Drug Discov. Today 2005, 10, 578–585, doi:10.1016/S1359-6446(05)03398-2.
[69]  Celada, P.; Puig, M.; Amargos-Bosch, M.; Adell, A.; Artigas, F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J. Psychiatry Neurosci. 2004, 29, 252–265.
[70]  De Angelis, L. 5-HT2A antagonists in psychiatric disorders. Curr. Opin. Investig. Drugs 2002, 3, 106–112.
[71]  Pauwels, P.J. 5-HT 1B/D receptor antagonists. Gen. Pharmacol. 1997, 29, 293–303, doi:10.1016/S0306-3623(96)00460-0.
[72]  Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 1994, 46, 157–203.
[73]  Deslandes, A.; Moraes, H.; Ferreira, C.; Veiga, H.; Silveira, H.; Mouta, R.; Pompeu, F.A.; Coutinho, E.S.; Laks, J. Exercise and mental health: Many reasons to move. Neuropsychobiology 2009, 59, 191–198, doi:10.1159/000223730.
[74]  Wipfli, B.; Landers, D.; Nagoshi, C.; Ringenbach, S. An examination of serotonin and psychological variables in the relationship between exercise and mental health. Scand. J. Med. Sci. Sports 2011, 21, 474–481, doi:10.1111/j.1600-0838.2009.01049.x.
[75]  Yau, S.Y.; Lau, B.W.; So, K.F. Adult hippocampal neurogenesis: A possible way how physical exercise counteracts stress. Cell Transplant. 2011, 20, 99–111, doi:10.3727/096368910X532846.
[76]  De Castro, J.M.; Duncan, G. Operantly conditioned running: Effects on brain catecholamine concentrations and receptor densities in the rat. Pharmacol. Biochem. Behav. 1985, 23, 495–500, doi:10.1016/0091-3057(85)90407-1.
[77]  Sutoo, D.; Akiyama, K. Regulation of brain function by exercise. Neurobiol. Dis. 2003, 13, 1–14, doi:10.1016/S0969-9961(03)00030-5.
[78]  MacRae, P.G.; Spirduso, W.W.; Walters, T.J.; Farrar, R.P.; Wilcox, R.E. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology (Berl.) 1987, 92, 236–240.
[79]  MacRae, P.G.; Spirduso, W.W.; Cartee, G.D.; Farrar, R.P.; Wilcox, R.E. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neurosci. Lett. 1987, 79, 138–144, doi:10.1016/0304-3940(87)90686-0.
[80]  Mizutani, K.; Sonoda, S.; Karasawa, N.; Yamada, K.; Shimpo, K.; Chihara, T.; Takeuchi, T.; Hasegawa, Y.; Kubo, K.Y. Effects of exercise after focal cerebral cortex infarction on basal ganglion. Neurol. Sci. 2012, doi:10.1007/s10072-012-1137-3.
[81]  Renoir, T.; Chevarin, C.; Lanfumey, L.; Hannan, A.J. Effect of enhanced voluntary physical exercise on brain levels of monoamines in Huntington disease mice. PLoS Curr. 2011, 3, doi:10.1371/currents.RRN1281.
[82]  Petzinger, G.M.; Walsh, J.P.; Akopian, G.; Hogg, E.; Abernathy, A.; Arevalo, P.; Turnquist, P.; Vuckovic, M.; Fisher, B.E.; Togasaki, D.M.; Jakowec, M.W. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J. Neurosci. 2007, 27, 5291–5300.
[83]  Fisher, B.E.; Petzinger, G.M.; Nixon, K.; Hogg, E.; Bremmer, S.; Meshul, C.K.; Jakowec, M.W. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J. Neurosci. Res. 2004, 77, 378–390, doi:10.1002/jnr.20162.
[84]  Vuckovic, M.G.; Li, Q.; Fisher, B.; Nacca, A.; Leahy, R.M.; Walsh, J.P.; Mukherjee, J.; Williams, C.; Jakowec, M.W.; Petzinger, G.M. Exercise elevates dopamine D2 receptor in a mouse model of Parkinson’s disease: In vivo imaging with [(1)(8)F]fallypride. Mov. Disord. 2010, 25, 2777–2784.
[85]  Yoon, M.C.; Shin, M.S.; Kim, T.S.; Kim, B.K.; Ko, I.G.; Sung, Y.H.; Kim, S.E.; Lee, H.H.; Kim, Y.P.; Kim, C.J. Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson’s rats. Neurosci. Lett. 2007, 423, 12–17, doi:10.1016/j.neulet.2007.06.031.
[86]  Tajiri, N.; Yasuhara, T.; Shingo, T.; Kondo, A.; Yuan, W.; Kadota, T.; Wang, F.; Baba, T.; Tayra, J.T.; Morimoto, T.; et al. Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res. 2010, 1310, 200–207, doi:10.1016/j.brainres.2009.10.075.
[87]  Mabandla, M.; Kellaway, L.; St Clair Gibson, A.; Russell, V.A. Voluntary running provides neuroprotection in rats after 6-hydroxydopamine injection into the medial forebrain bundle. Metab. Brain Dis. 2004, 19, 43–50, doi:10.1023/B:MEBR.0000027416.13070.c3.
[88]  Gerecke, K.M.; Jiao, Y.; Pani, A.; Pagala, V.; Smeyne, R.J. Exercise protects against MPTP-induced neurotoxicity in mice. Brain Res. 2010, 1341, 72–83, doi:10.1016/j.brainres.2010.01.053.
[89]  Wu, S.Y.; Wang, T.F.; Yu, L.; Jen, C.J.; Chuang, J.I.; Wu, F.S.; Wu, C.W.; Kuo, Y.M. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 2011, 25, 135–146, doi:10.1016/j.bbi.2010.09.006.
[90]  Tanaka, K.; Quadros, A.C., Jr.; Santos, R.F.; Stella, F.; Gobbi, L.T.; Gobbi, S. Benefits of physical exercise on executive functions in older people with Parkinson’s disease. Brain Cogn. 2009, 69, 435–441, doi:10.1016/j.bandc.2008.09.008.
[91]  Xu, Q.; Park, Y.; Huang, X.; Hollenbeck, A.; Blair, A.; Schatzkin, A.; Chen, H. Physical activities and future risk of Parkinson disease. Neurology 2010, 75, 341–348.
[92]  Greenwood, B.N.; Kennedy, S.; Smith, T.P.; Campeau, S.; Day, H.E.; Fleshner, M. Voluntary freewheel running selectively modulates catecholamine content in peripheral tissue and c-Fos expression in the central sympathetic circuit following exposure to uncontrollable stress in rats. Neuroscience 2003, 120, 269–281, doi:10.1016/S0306-4522(03)00047-2.
[93]  Greenwood, B.N.; Fleshner, M. Exercise, learned helplessness, and the stress-resistant brain. Neuromolecular Med. 2008, 10, 81–98, doi:10.1007/s12017-008-8029-y.
[94]  Sciolino, N.R.; Holmes, P.V. Exercise offers anxiolytic potential: A role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci. Biobehav. Rev. 2012, 36, 1965–1984, doi:10.1016/j.neubiorev.2012.06.005.
[95]  Pieribone, V.A.; Xu, Z.Q.; Zhang, X.; Grillner, S.; Bartfai, T.; Hokfelt, T. Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience 1995, 64, 861–874, doi:10.1016/0306-4522(94)00450-J.
[96]  Seutin, V.; Verbanck, P.; Massotte, L.; Dresse, A. Galanin decreases the activity of locus coeruleus neurons in vitro. Eur. J. Pharmacol. 1989, 164, 373–376, doi:10.1016/0014-2999(89)90481-0.
[97]  O’Neal, H.A.; van Hoomissen, J.D.; Holmes, P.V.; Dishman, R.K. Prepro-galanin messenger RNA levels are increased in rat locus coeruleus after treadmill exercise training. Neurosci. Lett. 2001, 299, 69–72, doi:10.1016/S0304-3940(00)01780-8.
[98]  Murray, P.S.; Groves, J.L.; Pettett, B.J.; Britton, S.L.; Koch, L.G.; Dishman, R.K.; Holmes, P.V. Locus coeruleus galanin expression is enhanced after exercise in rats selectively bred for high capacity for aerobic activity. Peptides 2010, 31, 2264–2268, doi:10.1016/j.peptides.2010.09.005.
[99]  Reiss, J.I.; Dishman, R.K.; Boyd, H.E.; Robinson, J.K.; Holmes, P.V. Chronic activity wheel running reduces the severity of kainic acid-induced seizures in the rat: Possible role of galanin. Brain Res. 2009, 1266, 54–63, doi:10.1016/j.brainres.2009.02.030.
[100]  Van Hoomissen, J.D.; Holmes, P.V.; Zellner, A.S.; Poudevigne, A.; Dishman, R.K. Effects of beta-adrenoreceptor blockade during chronic exercise on contextual fear conditioning and mRNA for galanin and brain-derived neurotrophic factor. Behav. Neurosci. 2004, 118, 1378–1390, doi:10.1037/0735-7044.118.6.1378.
[101]  Legakis, I.N.; Mantzouridis, T.; Saramantis, A.; Phenekos, C.; Tzioras, C.; Mountokalakis, T. Human galanin secretion is increased upon normal exercise test in middle-age individuals. Endocr. Res. 2000, 26, 357–364, doi:10.3109/07435800009066173.
[102]  Murchison, C.F.; Zhang, X.Y.; Zhang, W.P.; Ouyang, M.; Lee, A.; Thomas, S.A. A distinct role for norepinephrine in memory retrieval. Cell 2004, 117, 131–143.
[103]  Tully, K.; Bolshakov, V.Y. Emotional enhancement of memory: How norepinephrine enables synaptic plasticity. Mol. Brain 2010, 3, 15, doi:10.1186/1756-6606-3-15.
[104]  Groch, S.; Wilhelm, I.; Diekelmann, S.; Sayk, F.; Gais, S.; Born, J. Contribution of norepinephrine to emotional memory consolidation during sleep. Psychoneuroendocrinology 2011, 36, 1342–1350, doi:10.1016/j.psyneuen.2011.03.006.
[105]  Szot, P. Common factors among Alzheimer’s disease, Parkinson’s disease, and epilepsy: Possible role of the noradrenergic nervous system. Epilepsia 2012, 53, 61–66, doi:10.1111/j.1528-1167.2012.03476.x.
[106]  Vazey, E.M.; Aston-Jones, G. The emerging role of norepinephrine in cognitive dysfunctions of Parkinson’s disease. Front. Behav. Neurosci. 2012, 6, 48.
[107]  Dunn, A.L.; Reigle, T.G.; Youngstedt, S.D.; Armstrong, R.B.; Dishman, R.K. Brain norepinephrine and metabolites after treadmill training and wheel running in rats. Med. Sci. Sports Exerc. 1996, 28, 204–209.
[108]  Sarbadhikari, S.N.; Saha, A.K. Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis. Theor. Biol. Med. Model. 2006, 3, 33, doi:10.1186/1742-4682-3-33.
[109]  Ebrahimi, S.; Rashidy-Pour, A.; Vafaei, A.A.; Akhavan, M.M. Central beta-adrenergic receptors play an important role in the enhancing effect of voluntary exercise on learning and memory in rat. Behav. Brain Res. 2010, 208, 189–193, doi:10.1016/j.bbr.2009.11.032.
[110]  Segal, S.K.; Cotman, C.W.; Cahill, L.F. Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. J. Alzheimers Dis. 2012, 32, 1011–1018.
[111]  Chen, H.I.; Lin, L.C.; Yu, L.; Liu, Y.F.; Kuo, Y.M.; Huang, A.M.; Chuang, J.I.; Wu, F.S.; Liao, P.C.; Jen, C.J. Treadmill exercise enhances passive avoidance learning in rats: The role of down-regulated serotonin system in the limbic system. Neurobiol. Learn. Mem. 2008, 89, 489–496, doi:10.1016/j.nlm.2007.08.004.
[112]  Chennaoui, M.; Grimaldi, B.; Fillion, M.P.; Bonnin, A.; Drogou, C.; Fillion, G.; Guezennec, C.Y. Effects of physical training on functional activity of 5-HT1B receptors in rat central nervous system: Role of 5-HT-moduline. Naunyn Schmiedebergs Arch. Pharmacol. 2000, 361, 600–604, doi:10.1007/s002100000242.
[113]  Greenwood, B.N.; Foley, T.E.; Day, H.E.; Burhans, D.; Brooks, L.; Campeau, S.; Fleshner, M. Wheel running alters serotonin (5-HT) transporter, 5-HT1A, 5-HT1B, and alpha 1b-adrenergic receptor mRNA in the rat raphe nuclei. Biol. Psychiatry 2005, 57, 559–568, doi:10.1016/j.biopsych.2004.11.025.
[114]  Samorajski, T.; Rolsten, C.; Przykorska, A.; Davis, C.M. Voluntary wheel running exercise and monoamine levels in brain, heart and adrenal glands of aging mice. Exp. Gerontol. 1987, 22, 421–431, doi:10.1016/0531-5565(87)90022-2.
[115]  Maniam, J.; Morris, M.J. Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: Role of hippocampus. Psychoneuroendocrinology 2010, 35, 1553–1564, doi:10.1016/j.psyneuen.2010.05.012.
[116]  Neumaier, J.F.; Edwards, E.; Plotsky, P.M. 5-HT(1B) mrna regulation in two animal models of altered stress reactivity. Biol. Psychiatry 2002, 51, 902–908, doi:10.1016/S0006-3223(01)01371-3.
[117]  Greenwood, B.N.; Strong, P.V.; Dorey, A.A.; Fleshner, M. Therapeutic effects of exercise: Wheel running reverses stress-induced interference with shuttle box escape. Behav. Neurosci. 2007, 121, 992–1000, doi:10.1037/0735-7044.121.5.992.
[118]  Greenwood, B.N.; Foley, T.E.; Day, H.E.; Campisi, J.; Hammack, S.H.; Campeau, S.; Maier, S.F.; Fleshner, M. Freewheel running prevents learned helplessness/behavioral depression: Role of dorsal raphe serotonergic neurons. J. Neurosci. 2003, 23, 2889–2898.
[119]  Meltzer, C.C.; Smith, G.; DeKosky, S.T.; Pollock, B.G.; Mathis, C.A.; Moore, R.Y.; Kupfer, D.J.; Reynolds, C.F., III. Serotonin in aging, late-life depression, and Alzheimer’s disease: The emerging role of functional imaging. Neuropsychopharmacology 1998, 18, 407–430, doi:10.1016/S0893-133X(97)00194-2.
[120]  Reynolds, G.P.; Mason, S.L.; Meldrum, A.; de Keczer, S.; Parnes, H.; Eglen, R.M.; Wong, E.H. 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: Distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol. 1995, 114, 993–998, doi:10.1111/j.1476-5381.1995.tb13303.x.
[121]  Kan, R.; Wang, B.; Zhang, C.; Yang, Z.; Ji, S.; Lu, Z.; Zheng, C.; Jin, F.; Wang, L. Association of the HTR6 polymorphism C267T with late-onset Alzheimer’s disease in Chinese. Neurosci. Lett. 2004, 372, 27–29, doi:10.1016/j.neulet.2004.09.007.
[122]  Francis, P.T.; Pangalos, M.N.; Bowen, D.M. Animal and drug modelling for Alzheimer synaptic pathology. Prog. Neurobiol. 1992, 39, 517–545, doi:10.1016/0301-0082(92)90005-Y.
[123]  Meneses, A. 5-HT system and cognition. Neurosci. Biobehav. Rev. 1999, 23, 1111–1125, doi:10.1016/S0149-7634(99)00067-6.
[124]  Meneses, A.; Perez-Garcia, G. 5-HT(1A) receptors and memory. Neurosci. Biobehav. Rev. 2007, 31, 705–727, doi:10.1016/j.neubiorev.2007.02.001.
[125]  King, M.V.; Marsden, C.A.; Fone, K.C. A role for the 5-HT(1A), 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol. Sci. 2008, 29, 482–492, doi:10.1016/j.tips.2008.07.001.
[126]  Hasselbalch, S.G.; Madsen, K.; Svarer, C.; Pinborg, L.H.; Holm, S.; Paulson, O.B.; Waldemar, G.; Knudsen, G.M. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment. Neurobiol. Aging 2008, 29, 1830–1838, doi:10.1016/j.neurobiolaging.2007.04.011.
[127]  Harvey, J.A. Role of the serotonin 5-HT(2A) receptor in learning. Learn. Mem. 2003, 10, 355–362, doi:10.1101/lm.60803.
[128]  Renoir, T.; Pang, T.Y.; Zajac, M.S.; Chan, G.; Du, X.; Leang, L.; Chevarin, C.; Lanfumey, L.; Hannan, A.J. Treatment of depressive-like behaviour in Huntington’s disease mice by chronic sertraline and exercise. Br. J. Pharmacol. 2012, 165, 1375–1389, doi:10.1111/j.1476-5381.2011.01567.x.
[129]  Mattson, M.P.; Maudsley, S.; Martin, B. BDNF and 5-HT: A dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2004, 27, 589–594, doi:10.1016/j.tins.2004.08.001.
[130]  De Deurwaerdere, P.; L’Hirondel, M.; Bonhomme, N.; Lucas, G.; Cheramy, A.; Spampinato, U. Serotonin stimulation of 5-HT4 receptors indirectly enhances in vivo dopamine release in the rat striatum. J. Neurochem. 1997, 68, 195–203.
[131]  Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 2009, 10, 211–223, doi:10.1038/nrn2573.
[132]  Smith, C.C.; Greene, R.W. CNS dopamine transmission mediated by noradrenergic innervation. J. Neurosci. 2012, 32, 6072–6080, doi:10.1523/JNEUROSCI.6486-11.2012.
[133]  Liu, Y.F.; Chen, H.I.; Wu, C.L.; Kuo, Y.M.; Yu, L.; Huang, A.M.; Wu, F.S.; Chuang, J.I.; Jen, C.J. Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J. Physiol. 2009, 587, 3221–3231, doi:10.1113/jphysiol.2009.173088.
[134]  Lin, T.W.; Chen, S.J.; Huang, T.Y.; Chang, C.Y.; Chuang, J.I.; Wu, F.S.; Kuo, Y.M.; Jen, C.J. Different types of exercise induce differential effects on neuronal adaptations and memory performance. Neurobiol. Learn. Mem. 2012, 97, 140–147, doi:10.1016/j.nlm.2011.10.006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133