The etiologic agent of Chagas Disease is the Trypanosoma cruzi, transmitted through blood-sucking insect vectors of the Triatominae subfamily, representing one of the most serious public health concerns in Latin America. There are geographic variations in the prevalence of clinical forms and morbidity of Chagas disease, likely due to genetic variation of the T. cruzi and the host genetic and environmental features. Increasing evidence has supported that inflammatory cytokines and chemokines are responsible for the generation of the inflammatory infiltrate and tissue damage. Moreover, genetic polymorphisms, protein expression levels, and genomic imbalances are associated with disease progression. This paper discusses these key aspects. Large surveys were carried out in Brazil and served as baseline for definition of the control measures adopted. However, Chagas disease is still active, and aspects such as host-parasite interactions, genetic mechanisms of cellular interaction, genetic variability, and tropism need further investigations in the attempt to eradicate the disease. 1. Chagas Disease 1.1. Epidemiology and Clinical Outcomes Chagas disease, also called American trypanosomiasis, remains an epidemiologic challenge more than one hundred years after its discovery by Carlos Chagas [1]. It is estimated that 12–14 million people are infected with Trypanosoma cruzi in Latin America where the disease is endemic, and 75–90 million are exposed to infection [1, 2]. Less frequently, infection occurs through blood transfusion, vertical transmission (from infected mother to child), or organ donation [3]. In 2008, it was estimated that more than 10 thousand people were killed by Chagas disease [3]. In Brazil, the infection has already afflicted about 2.5 million individuals [4] despite the success of control measures responsible of elimination of domestic and peridomestic colonies of vector and monitoring of blood banks, which reduced incidence by approximately 70% in the Southern Cone countries. Due to the intense population migration and mobility, Chagas disease has spread in North America and Europe and is now global [5, 6]. Chagas disease is characterized by a wide spectrum of clinical outcomes, ranging from absence of symptoms to severe disease. Clinical course includes acute and chronic phases, separated by an indefinite period when patients are relatively asymptomatic. The acute phase is usually subclinical with deep parasitemia. In the indeterminate phase, patients have positive serologic and/or parasitological tests but are asymptomatic without
References
[1]
J. R. Coura and J. C. P. Dias, “Epidemiology, control and surveillance of Chagas disease—100 years after its discovery,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 1, pp. 31–40, 2009.
[2]
J. C. P. Dias, “A doen?a de Chagas como problema do Continente Americano,” http://www.fiocruz.br/chagas/cgi/cgilua.exe/sys/start.htm?sid=134.
V. A. Neto and J. Pasternak, “Chagas disease centenary,” Revista de Saude Publica, vol. 43, no. 2, pp. 381–382, 2009.
[5]
M. Develoux, F. X. Lescure, G. Le Loup, and G. Pialoux, “Chagas disease,” Revue de Medecine Interne, vol. 30, no. 8, pp. 686–695, 2009.
[6]
M. L. Avila, V. Tekiel, G. Moretti et al., “Gene discovery in Triatoma infestans,” Parasites and Vectors, vol. 4, no. 1, article 39, 2011.
[7]
M. Lana and W. L. Tafuri, “Trypanosoma cruzi e doen?a de chagas,” in Parasitologia Humana, D. P. Neves, A. L. Melo, O. Genaro, and P. M. Linardi, Eds., pp. 73–96, Atheneu Editora, 10th edition, 2003.
[8]
E. Cunha-Neto, R. Moliterno, V. Coelho et al., “Restricted heterogeneity of T cell receptor variable alpha chain transcripts in hearts of Chagas' disease cardiomyopathy patients,” Parasite Immunology, vol. 16, no. 4, pp. 171–179, 1994.
[9]
E. Cunha-Neto, M. Duranti, A. Gruber et al., “Autoimmunity in Chagas disease cardiopathy: biological relevance of a cardiac myosin-specific epitope crossreactive to an immunodominant Trypanosoma cruzi antigen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 8, pp. 3541–3545, 1995.
[10]
J. V. Souto and M. A. A. Ribeiro, “Saúde e vida on line/Doen?a de Chagas,” http://www.ib.unicamp.br/svol/chagas.htm.
[11]
H. W. Pinotti, “Megaes?fago chagásico,” in Aparelho Digestivo, J. C. U. Coelho, Ed., vol. 1, pp. 61–67, MDESI, 1996.
[12]
J. A. S. Gomes, L. M. G. Bahia-Oliveira, M. O. C. Rocha, O. A. Martins-Filho, G. Gazzinelli, and R. Correa-Oliveira, “Evidence that development of severe cardiomyopathy in human Chagas' disease is due to a Th1-specific immune response,” Infection and Immunity, vol. 71, no. 3, pp. 1185–1193, 2003.
[13]
Z. Brener, “Why vaccines do not work in Chagas disease,” Parasitology Today, vol. 2, no. 7, pp. 196–197, 1986.
[14]
A. D.C. Passos and A. C. Silveira, “Summary of results from the national surveys,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 44, supplement 2, pp. 47–50, 2011.
[15]
A. C. Silveira, “Entomological survey (1975–1983),” Revista da Sociedade Brasileira de Medicina Tropical, vol. 44, no. 2, pp. 26–32, 2011.
[16]
A. C. Silveira, “New challenges and the future of control,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 44, supplement 2, pp. 122–124, 2011.
[17]
A. C. Silveira and J. C. P. Dias, “The control of vectorial transmission,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 4, no. 2, pp. 52–63, 2011.
[18]
D. A. Leiby, E. J. Read, B. A. Lenes et al., “Seroepidemiology of Trypanosoma cruzi, etiologic agent of Chagas' disease, in US blood donors,” Journal of Infectious Diseases, vol. 176, no. 4, pp. 1047–1052, 1997.
[19]
C. A. Buscaglia and J. M. Di Noia, “Trypanosoma cruzi clonal diversity and the epidemiology of Chagas' disease,” Microbes and Infection, vol. 5, no. 5, pp. 419–427, 2003.
[20]
M. I. Picollo, C. Vassena, P. S. Orihuela, S. Barrios, M. Zaidemberg, and E. Zerba, “High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina,” Journal of Medical Entomology, vol. 42, no. 4, pp. 637–642, 2005.
[21]
F. Lardeux, S. Depickère, S. Duchon, and T. Chavez, “Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia,” Tropical Medicine and International Health, vol. 15, no. 9, pp. 1037–1048, 2010.
[22]
B. A. Burleigh and A. M. Woolsey, “Cell signalling and Trypanosoma cruzi invasion,” Cellular Microbiology, vol. 4, no. 11, pp. 701–711, 2002.
[23]
A. M. Macedo and S. D. J. Pena, “Genetic variability of Trypanosoma cruzi: implications for the pathogenesis of Chagas disease,” Parasitology Today, vol. 14, no. 3, pp. 119–124, 1998.
[24]
A. M. Macedo, C. R. Machado, R. P. Oliveira, and S. D. J. Pena, “Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of chagas disease,” Memorias do Instituto Oswaldo Cruz, vol. 99, no. 1, pp. 1–12, 2004.
[25]
S. A. Drigo, E. Cunha-Neto, B. Ianni et al., “TNF gene polymorphisms are associated with reduced survival in severe Chagas' disease cardiomyopathy patients,” Microbes and Infection, vol. 8, no. 3, pp. 598–603, 2006.
[26]
S. A. Drigo, E. Cunha-Neto, B. Ianni et al., “Lack of association of tumor necrosis factor-α polymorphisms with Chagas disease in Brazilian patients,” Immunology Letters, vol. 108, no. 1, pp. 109–111, 2007.
[27]
R. Ramasawmy, E. Cunha-Neto, K. C. Faé et al., “BAT1, a putative anti-inflammatory gene, is associated with chronic chagas cardiomyopathy,” Journal of Infectious Diseases, vol. 193, no. 10, pp. 1394–1399, 2006.
[28]
R. Ramasawmy, K. C. Faé, E. Cunha-Neto et al., “Polymorphisms in the gene for lymphotoxin-α predispose to chronic chagas cardiomyopathy,” Journal of Infectious Diseases, vol. 196, no. 12, pp. 1836–1843, 2007.
[29]
R. Ramasawmy, E. Cunha-Neto, K. C. Fae et al., “Heterozygosity for the S180L variant of MAL/TIRAP, a gene expressing an adaptor protein in the toll-like receptor pathway, is associated with lower risk of developing chronic chagas cardiomyopathy,” Journal of Infectious Diseases, vol. 199, no. 12, pp. 1838–1845, 2009.
[30]
J. E. Calzada, Y. Beraún, C. I. González, and J. Martín, “Transforming growth factor beta 1 (TGFβ1) gene polymorphisms and Chagas disease susceptibility in Peruvian and Colombian patients,” Cytokine, vol. 45, no. 3, pp. 149–153, 2009.
[31]
A. B. W. Boldt, P. R. Luz, and I. J. T. Messias-Reason, “MASP2 haplotypes are associated with high risk of cardiomyopathy in chronic Chagas disease,” Clinical Immunology, vol. 140, no. 1, pp. 63–70, 2011.
[32]
D. Cruz-Robles, J. P. Chvez-Gonzlez, M. M. Cavazos-Quero, O. Prez-Mndez, P. A. Reyes, and G. Vargas-Alarcn, “Association between IL-1B and IL-1RN gene polymorphisms and chagas' disease development susceptibility,” Immunological Investigations, vol. 38, no. 3-4, pp. 231–239, 2009.
[33]
J. M. Vera-Cruz, E. Magallón-Gastelum, G. Grijalva, A. R. Rincón, C. Ramos-García, and J. Armendáriz-Borunda, “Molecular diagnosis of Chagas' disease and use of an animal model to study parasite tropism,” Parasitology Research, vol. 89, no. 6, pp. 480–486, 2003.
[34]
A. Acosta-Serrano, I. C. Almeida, L. H. Freitas-Junior, N. Yoshida, and S. Schenkman, “The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles,” Molecular and Biochemical Parasitology, vol. 114, no. 2, pp. 143–150, 2001.
[35]
M. de Melo-Jorge and M. PereiraPerrin, “The Chagas' Disease parasite Trypanosoma cruzi exploits nerve growth factor receptor TrkA to infect mammalian hosts,” Cell Host and Microbe, vol. 1, no. 4, pp. 251–261, 2007.
[36]
M. V. Chuenkova and M. PereiraPerrin, “Trypanosoma cruzi targets Akt in host cells as an intracellular antiapoptotic strategy,” Science Signaling, vol. 2, no. 97, pp. 1–6, 2009.
[37]
W. B. Dias, F. D. Fajardo, A. V. Gra?a-Souza et al., “Endothelial cell signalling induced by trans-sialidase from Trypanosoma cruzi,” Cellular Microbiology, vol. 10, no. 1, pp. 88–99, 2008.
[38]
P. A. Manque, C. Probst, M. C. Pereira et al., “Trypanosoma cruzi infection induces a global host cell response in Cardiomyocytes,” Infection and Immunity, vol. 79, no. 5, pp. 1855–1862, 2011.
[39]
M. Tibayrenc, P. Ward, A. Moya, and F. J. Ayala, “Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 1, pp. 115–119, 1986.
[40]
M. Tibayrenc and F. Ayala, “Isozyme variability in Trypanosoma cruzi, the agent of Chagas disease: genetic, taxonomical and epidemiological significance,” Evolution, vol. 42, pp. 277–292, 1988.
[41]
S. Brisse, C. Barnabé, and M. Tibayrenc, “Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis,” International Journal for Parasitology, vol. 30, no. 1, pp. 35–44, 2000.
[42]
S. J. Westenberger, N. R. Sturm, and D. A. Campbell, “Trypanosoma cruzi 5S rRNA arrays define five groups and indicate the geographic origins of an ancestor of the heterozygous hybrids,” International Journal for Parasitology, vol. 36, no. 3, pp. 337–346, 2006.
[43]
N. A?ez, G. Crisante, F. M. Da Silva et al., “Predominance of lineage I among Trypanosoma cruzi isolates from Venezuelan patients with different clinical profiles of acute Chagas' disease,” Tropical Medicine and International Health, vol. 9, no. 12, pp. 1319–1326, 2004.
[44]
B. Zingales, S. G. Andrade, M. R. S. Briones et al., “A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 7, pp. 1051–1054, 2009.
[45]
S. F. Brenière, M. F. Bosseno, F. Noireau et al., “Integrate study of a Bolivian population infected by Trypanosoma cruzi, the agent of Chagas disease,” Memorias do Instituto Oswaldo Cruz, vol. 97, no. 3, pp. 289–295, 2002.
[46]
E. Lages-Silva, E. Crema, L. E. Amirez, A. M. Macedo, S. D. Pena, and E. Chiari, “Relationship between Trypanosoma cruzi and human chagasic megaesophagus: blood and tissue parasitism,” American Journal of Tropical Medicine and Hygiene, vol. 65, no. 5, pp. 435–441, 2001.
[47]
E. Lages-Silva, L. E. Ramírez, A. L. Pedrosa et al., “Variability of kinetoplast DNA gene signatures of Trypanosoma cruzi II strains from patients with different clinical forms of Chagas' disease in Brazil,” Journal of Clinical Microbiology, vol. 44, no. 6, pp. 2167–2171, 2006.
[48]
M. Virreira, G. Serrano, L. Maldonado, and M. Svoboda, “Trypanosoma cruzi: typing of genotype (sub)lineages in megacolon samples from bolivian patients,” Acta Tropica, vol. 100, no. 3, pp. 252–255, 2006.
[49]
F. da Silva Manoel-Caetano, C. M. A. Carareto, A. A. Borim, K. Miyazaki, and A. E. Silva, “kDNA gene signatures of Trypanosoma cruzi in blood and oesophageal mucosa from chronic chagasic patients,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 11, pp. 1102–1107, 2008.
[50]
R. Del Puerto, J. E. Nishizawa, M. Kikuchi et al., “Lineage analysis of circulating Trypanosoma cruzi parasites and their association with clinical forms of chagas disease in Bolivia,” PLoS Neglected Tropical Diseases, vol. 4, no. 5, article e687, 2010.
[51]
N. O. Fowler and M. Gueron, “Primary myocardial disease,” Circulation, vol. 32, no. 5, pp. 830–836, 1965.
[52]
I. M. Barbash and J. Leor, “Myocardial regeneration by adult stem cells,” Israel Medical Association Journal, vol. 8, no. 4, pp. 283–287, 2006.
[53]
E. Cunha-Neto, L. G. Nogueira, P. C. Teixeira et al., “Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 1, pp. 252–258, 2009.
[54]
F. K?berle, “Chagas' disease and chagas' syndromes: the pathology of American trypanosomiasis,” Advances in Parasitology, vol. 6, no. C, pp. 63–116, 1968.
[55]
J. M. de Rezende and A. O. Luquetti, “Chagasic megavisceras,” in Chagas’ Disease and the Nervous System, vol. 547, pp. 149–171, Pan American Health Organization, 1994.
[56]
W. C. Van Voorhis and H. Eisen, “Fl-160. A surface antigen of Trypanosoma cruzi that mimics mammalian nervous tissue,” Journal of Experimental Medicine, vol. 169, no. 3, pp. 641–652, 1989.
[57]
R. E. Kraichely and G. Farrugia, “Achalasia: physiology and etiopathogenesis,” Diseases of the Esophagus, vol. 19, no. 4, pp. 213–223, 2006.
[58]
D. Pajecki, B. Zilberstein, M. A. A. Dos Santos et al., “Megaesophagus microbiota: a qualitative and quantitative analysis,” Journal of Gastrointestinal Surgery, vol. 6, no. 5, pp. 723–729, 2002.
[59]
I. Gockel, P. K?mmerer, T. Junginger et al., “Image cytometric DNA analysis of mucosal biopsies in patients with primary achalasia,” World Journal of Gastroenterology, vol. 12, no. 18, pp. 3020–3025, 2006.
[60]
H. W. Pinotti, C. E. Domene, I. Cecconello, and B. Zilberstein, “Chagasic megaesophagus,” in The Digestive System, J. C. U. Coelho, Ed., pp. 61–67, MEDSI, Rio de Janeiro, Brazil, 1996.
[61]
B. L. D. M. Brücher, H. J. Stein, H. Bartels, H. Feussner, and J. R. Siewert, “Achalasia and esophageal cancer: incidence, prevalence, and prognosis,” World Journal of Surgery, vol. 25, no. 6, pp. 745–749, 2001.
[62]
J. M. Crawford, “The gastrointestinal tract,” in Robins and Cotran, Pathologic Basis of Disease, V. Kumar, A. K. Abbas, and N. Fausto, Eds., pp. 775–787, W. B. Saunders Company, Philadelphia, Pa, USA, 6th edition, 2004.
[63]
A. V. Safatle-Ribeiro, U. Ribeiro Jr., P. Sakai et al., “Integrated p53 histopathologic/genetic analysis of premalignant lesions of the esophagus,” Cancer Detection and Prevention, vol. 24, no. 1, pp. 13–23, 2000.
[64]
O. Chino, H. Kijima, H. Shimada et al., “Clinicopathological studies of esophageal carcinoma in achalasia: analyses of carcinogenesis using histological and immunohistochemical procedures,” Anticancer Research, vol. 20, no. 5, pp. 3717–3722, 2000.
[65]
A. Bektas, M. H. Yasa, I. Kuzu, I. Dogan, S. ünal, and N. ?rmeci, “Flow cytometric DNA analysis, and immunohistochemical p53, PCNA and histopathologic study in primary achalasia: preliminary results,” Hepato-Gastroenterology, vol. 48, no. 38, pp. 408–412, 2001.
[66]
M. B. Lehman, S. B. Clark, A. H. Ormsby, T. W. Rice, J. E. Richter, and J. R. Goldblum, “Squamous mucosal alterations in esophagectomy specimens from patients with end-stage achalasia,” American Journal of Surgical Pathology, vol. 25, no. 11, pp. 1413–1418, 2001.
[67]
T. Iwata, N. Kurita, M. Nishioka et al., “p53 and MIB-1 expression of esophageal carcinoma concominant with achalasia,” Hepato-Gastroenterology, vol. 54, no. 77, pp. 1430–1432, 2007.
[68]
M. F. Bellini, K. R. M. Leite, P. M. Cury, and A. E. Silva, “p53, p16 and Fhit proteins expressions in chronic esophagitis and Chagas disease,” Anticancer Research, vol. 28, no. 6 A, pp. 3793–3799, 2008.
[69]
F. D. S. Manoel-Caetano, A. A. Borim, A. Caetano, P. M. Cury, and A. E. Silva, “Cytogenetic alterations in chagasic achalasia compared to esophageal carcinoma,” Cancer Genetics and Cytogenetics, vol. 149, no. 1, pp. 17–22, 2004.
[70]
M. F. Bellini, A. J. Manzato, A. E. Silva, and M. Varella-Garcia, “Chromosomal imbalances are uncommon in chagasic megaesophagus,” BMC Gastroenterology, vol. 10, article 20, 2010.
[71]
F. D. S. Manoel-Caetano, A. F. P. Silveira, and A. E. Silva, “Gene mutations in esophageal mucosa of chagas disease patients,” Anticancer Research, vol. 29, no. 4, pp. 1243–1248, 2009.
[72]
M. F. Bellini, P. M. Cury, and A. E. Silva, “Expression of Ki-67 antigen and caspase-3 protein in benign lesions and esophageal carcinoma,” Anticancer Research, vol. 30, no. 7, pp. 2845–2849, 2010.
[73]
J. C. M. dos Santos Jr., “Megacólon—parte II: doen?a de chagas,” Revista Brasileira de Coloproctologia, vol. 4, pp. 266–277, 2002.
[74]
A. B. M. da Silveira, E. M. Lemos, S. J. Adad, R. Correa-Oliveira, J. B. Furness, and D. D'Avila Reis, “Megacolon in Chagas disease: a study of inflammatory cells, enteric nerves, and glial cells,” Human Pathology, vol. 38, no. 8, pp. 1256–1264, 2007.
[75]
A. B. M. da Silveira, M. A. R. Freitas, E. C. de Oliveira et al., “Glial fibrillary acidic protein and S-100 colocalization in the enteroglial cells in dilated and nondilated portions of colon from chagasic patients,” Human Pathology, vol. 40, no. 2, pp. 244–251, 2009.
[76]
A. B. M. da Silveira, M. A. R. Freitas, E. C. de Oliveira et al., “Substance P and NK1 receptor expression in the enteric nervous system is related to the development of chagasic megacolon,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 11, pp. 1154–1156, 2008.
[77]
A. B. M. da Silveira, F. Fortes de Araújo, M. A. R. Freitas et al., “Characterization of the presence and distribution of Foxp3+ cells in chagasic patients with and without megacolon,” Human Immunology, vol. 70, no. 1, pp. 65–67, 2009.
[78]
A. Barcelos Morais Da Silveira, E. C. De Oliveira, S. G. Neto et al., “Enteroglial cells act as antigen-presenting cells in chagasic megacolon,” Human Pathology, vol. 42, no. 4, pp. 522–532, 2011.
[79]
A. L. Ostermayer, A. D. C. Passos, A. C. Silveira, A. W. Ferreira, V. Macedo, and A. R. Prata, “The National Survey of seroprevalence for evaluation of the control of Chagas disease in Brazil (2001–2008),” Revista da Sociedade Brasileira de Medicina Tropical, vol. 44, no. 2, supplement, pp. 108–121, 2011.
[80]
M. E. de Carvalho, R. A. da Silva, D. M.V. Wanderley, and J. M.S. Barata, “Chagas disease Control Program in the State of S?o Paulo, Brazil: serological and entomological aspects of primary school-children surveys,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 44, supplement 2, pp. 95–106, 2011.