Species distribution models were constructed for ten Ixodes species and Amblyomma cajennense for a region including Mexico and Texas. The model was based on a maximum entropy algorithm that used environmental layers to predict the relative probability of presence for each taxon. For Mexico, species geographic ranges were predicted by restricting the models to cells which have a higher probability than the lowest probability of the cells in which a presence record was located. There was spatial nonconcordance between the distributions of Amblyomma cajennense and the Ixodes group with the former restricted to lowlands and mainly the eastern coast of Mexico and the latter to montane regions with lower temperature. The risk of Lyme disease is, therefore, mainly present in the highlands where some Ixodes species are known vectors; if Amblyomma cajennense turns out to be a competent vector, the area of risk also extends to the lowlands and the east coast. 1. Introduction Lyme disease, the most frequently reported tick-borne infectious disease in the United States and Europe [1, 2], is increasingly being reported from Mexico [3, 4], where disease cases are more prevalent during warm-weather months when ticks are active. The etiologic agent, Borrelia burgdorferi, enters the skin at the site of the tick bite; after incubating for 3–30 days, the bacteria migrate through the skin and may spread to lymph nodes or disseminate through the bloodstream to other parts of the body. While B. burgdorferi infection might be endemic in Mexico [3, 4] it is relatively rare in the southern USA making the question of its biogeography a matter of interest. Additionally, in Mexico, the epidemiology and biogeography of Lyme disease are not well understood [5]. Several tick species have recently been identified as containing B. burgdorferi using a DNA polymerase chain reaction and, therefore, may be considered as candidates that may be involved in the enzootic transmission cycle in both Mexico and South America. These include tick species from the genus Ixodes [3, 4] as well as Amblyomma cajennense [5, David Beck, personal communication]. While detection of B. burgdorferi DNA by polymerase chain reaction is not indicative of vector competence, the presence of B. burgdorferi in the molecular surveys does indicate a benefit from modeling the distribution of A. cajennense since it has been shown to feed on reservoirs for B. burgdorferi in Mexico. Additionally, the South American A. cajennense has been shown to be a competent vector for Rickettsia rickettsii [6], the causative agent of
References
[1]
P. M. Rath, B. Ibershoff, A. Mohnhaupt et al., “Seroprevalence of Lyme borreliosis in forestry workers from Brandenburg, Germany,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 15, no. 5, pp. 372–377, 1996.
[2]
CDC, “Provisional cases of selected notifiable diseases, United States, weeks ending December 30, 2006,” Morbidity and Mortality Weekly Reports, vol. 55, pp. 51–52, 2007.
[3]
G. Gordillo, J. Torres, F. Solorzano, R. Cedillo-Rivera, R. Tapia-Conyer, and O. Mu?oz, “Serologic evidences suggesting the presence of Borrelia burgdorferi infection in Mexico,” Archives of Medical Research, vol. 30, no. 1, pp. 64–68, 1999.
[4]
G. Gordillo-Perez, J. Torres, F. Solorzano-Santos, V. Gardu?o-Bautista, R. Tapia-Conyer, and O. Mu?oz, “Seroepidemiologic study of Lyme’s borreliosis in Mexico City and the northeast of the Mexican Republic,” Salud Pública de México, vol. 45, pp. 351–355, 2003 (Spanish).
[5]
G. Gordillo-Pérez, J. Torres, F. Solórzano-Santos et al., “Borrelia burgdorferi infection and cutaneous lyme disease, Mexico,” Emerging Infectious Diseases, vol. 13, no. 10, pp. 1556–1558, 2007.
[6]
C. E. Souza, J. Moraes-Filho, M. Ogrzewalska et al., “Experimental infection of capybaras Hydrochoerus hydrochaeris by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense,” Veterinary Parasitology, vol. 161, no. 1-2, pp. 116–121, 2009.
[7]
M. B. Labruna, “Ecology of rickettsia in South America,” Annals of the New York Academy of Sciences, vol. 1166, pp. 156–166, 2009.
[8]
G. Montiel-Parra, H. Fuentes-Moreno, and M. Vargas, “First record of Ixodes cookei (Acari: Ixodidae) in Mexico,” Revista Mexicana de Biodiversidad, vol. 78, no. 1, pp. 205–206, 2007.
[9]
C. Guzmán-Cornejo and R. G. Robbins, “The genus Ixodes (Acari: Ixodidae) in Mexico: adult identification keys, diagnoses, hosts, and distribution,” Revista Mexicana de Biodiversidad, vol. 81, no. 2, pp. 289–298, 2010.
[10]
A. Estrada-Pe?a, A. A. Guglielmone, and A. J. Mangold, “The distribution and ecological 'preferences' of the tick Amblyomma cajennense (Acari: Ixodidae), an ectoparasite of humans and other mammals in the Americas,” Annals of Tropical Medicine and Parasitology, vol. 98, no. 3, pp. 283–292, 2004.
[11]
V. álvarez and M. R. Bonilla, “Adultos y ninfas de la garrapata Amblyomma cajennense Fabricius (Acari: Ixodidae) en equinos y bovinos,” Agronomía Costarricense, vol. 31, no. 1, pp. 61–69, 2007.
[12]
A. T. Peterson, “Biogeography of diseases: a framework for analysis,” Naturwissenschaften, vol. 95, no. 6, pp. 483–491, 2008.
[13]
A. Moffett, N. Shackelford, and S. Sarkar, “Malaria in Africa: vector species' niche models and relative risk maps,” PLoS ONE, vol. 2, no. 9, article e824, 2007.
[14]
A. T. Peterson, V. Sánchez-Cordero, C. Ben Beard, and J. M. Ramsey, “Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico,” Emerging Infectious Diseases, vol. 8, no. 7, pp. 662–667, 2002.
[15]
R. K. Meentemeyer, B. L. Anacker, W. Mark, and D. M. Rizzo, “Early detection of emerging forest disease using dispersal estimation and ecological niche modeling,” Ecological Applications, vol. 18, no. 2, pp. 377–390, 2008.
[16]
C. González, O. Wang, S. E. Strutz, C. González-Salazar, V. Sánchez-Cordero, and S. Sarkar, “Climate change and risk of leishmaniasis in North America: predictions from ecological niche models of vector and reservoir species,” PLoS Neglected Tropical Diseases, vol. 4, no. 1, article e585, 2010.
[17]
S. Sarkar, S. E. Strutz, D. M. Frank, C. L. Rivaldi, B. Sissel, and V. Sánchez-Cordero, “Chagas disease risk in Texas,” PLoS ONE, vol. 4, no. 10, article e836, 2010.
[18]
A. T. Peterson and D. A. Vieglais, “Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem,” BioScience, vol. 51, no. 5, pp. 363–371, 2001.
[19]
A. T. Peterson and M. Pape?, “Potential geographic distribution of the Bugun Liocichla Liocichla bugunorum, a poorly-known species from north-eastern India,” Indian Birds, vol. 2, pp. 146–149, 2007.
[20]
J. Soberón and A. T. Peterson, “Interpretation of models of ecological niches and species’ distributional areas,” Biodiversity Informatics, vol. 2, pp. 1–10, 2005.
[21]
J. Elith, C. H. Graham, R. P. Anderson et al., “Novel methods improve prediction of species' distributions from occurrence data,” Ecography, vol. 29, no. 2, pp. 129–151, 2006.
[22]
P. A. Hernandez, C. H. Graham, L. L. Master, and D. L. Albert, “The effect of sample size and species characteristics on performance of different species distribution modeling methods,” Ecography, vol. 29, no. 5, pp. 773–785, 2006.
[23]
S. J. Phillips, M. Dudík, and R. E. Schapire, “A maximum entropy approach to species distribution modeling,” in Proceedings of the 21st Century International Conference on Machine Learning, C. E. Brodley, Ed., pp. 655–662, ACM Press, Banff, Canada, 2004.
[24]
S. J. Phillips, R. P. Anderson, and R. E. Schapire, “Maximum entropy modeling of species geographic distributions,” Ecological Modelling, vol. 190, no. 3-4, pp. 231–259, 2006.
[25]
S. J. Phillips and M. Dudík, “Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation,” Ecography, vol. 31, no. 2, pp. 161–175, 2008.
[26]
C. R. Margules and S. Sarkar, Systematic Conservation Planning, Cambridge University Press, Cambridge, UK, 2007.
[27]
J. S. Thorn, V. Nijman, D. Smith, and K. A. I. Nekaris, “Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus),” Diversity and Distributions, vol. 15, no. 2, pp. 289–298, 2009.
[28]
L. Ochoa-Ochoa, J. N. Urbina-Cardona, L. B. Vázquez, O. Flores-Villela, and J. Bezaury-Creel, “The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians,” PLoS ONE, vol. 4, no. 9, article e6878, 2009.
[29]
P. C. Williamson, P. M. Billingsley, G. J. Teltow, J. P. Seals, M. A. Turnbough, and S. F. Atkinson, “Borrelia, Ehrlichia, and Rickettsia spp. in ticks removed from Persons, Texas, USA,” Emerging Infectious Diseases, vol. 16, no. 3, pp. 441–446, 2010.
[30]
S. J. Dergousoff, A. J. A. Gajadhar, and N. B. Chilton, “Prevalence of Rickettsia in Canadian populations of the ticks Dermacentor andersoni and D. variabilis,” Applied and Environmental Microbiology, vol. 75, pp. 1786–1789, 2009.
[31]
A. Moffett, S. Strutz, N. Guda et al., “A global public database of disease vector and reservoir distributions,” PLoS Neglected Tropical Diseases, vol. 3, no. 3, article e378, 2009.
[32]
R. J. Hijmans, D. M. Spooner, A. R. Salas, L. Guarino, and J. de la Cruz, Atlas of Wild Potatoes. Systematic and Ecogeographic Studies on Crop Genepools, vol. 10, International Plant Genetic Resources Institute, Rome, Italy, 2002.
[33]
S. Solís, El efecto del Programa de Control de Boophilus microplus en la Dinámica de Población de Amblyomma spp. en México. Actas de la Consulta de Expertos Sobre la Erradicación de las Garrapatas con Referencia Especial a las Américas, Food and Agriculture Organization, México, Mexico, 1987.
[34]
Anónimo, Estudio Ecológico y Epidemiológico de Garrapatas en Guatemala, Instituto Interamericano de Cooperación con la Agricultura—Ministerio de Agricultura, Ganadería y Alimentación, Guatemala, Mexico, 1988.
[35]
C. Víctor álvarez, M. Roberto Bonilla, and G. Idania Chacón, “Distribución de la garrapata Amblyomma cajennense (Acari: Ixodidae) sobre Bos taurus y Bos indicus en Costa Rica,” Revista de Biologia Tropical, vol. 48, no. 1, pp. 129–135, 2000.
[36]
A. Estrada-Pe?a, “Prediction of habitat suitability for ticks,” Annals of the New York Academy of Sciences, vol. 1078, pp. 275–284, 2006.
[37]
M. W. Smith, “Some aspects of the ecology and lifecycle of Amblyomma cajennense (Fabricius 1787) in Trinidad and their influence on tick control measures,” Annals of Tropical Medicine and Parasitology, vol. 69, no. 1, pp. 121–129, 1975.
[38]
M. B. Labruna, C. E. Kerber, F. Ferreira, J. L. H. Faccini, D. T. De Waal, and S. M. Gennari, “Risk factors to tick infestations and their occurrence on horses in the state of S?o Paulo, Brazil,” Veterinary Parasitology, vol. 97, no. 1, pp. 1–14, 2001.
[39]
A. A. Guglielmone, A. J. Mangold, D. H. Aguirre, and A. B. Gaido, “Ecological aspects of four species of ticks found on cattle in Salta, Northwest Argentina,” Veterinary Parasitology, vol. 35, no. 1-2, pp. 93–101, 1990.
[40]
A. T. Peterson, “Predicting species' geographic distributions based on ecological niche modeling,” Condor, vol. 103, no. 3, pp. 599–605, 2001.
[41]
V. Sánchez-Cordero, P. Illoldi-Rangel, M. Linaje, S. Sarkar, and A. T. Peterson, “Deforestation and extant distributions of Mexican endemic mammals,” Biological Conservation, vol. 126, no. 4, pp. 465–473, 2005.
[42]
A. T. Peterson, V. Sánchez-Cordero, J. Soberón, J. Bartley, R. W. Buddemeier, and A. G. Navarro-Sigüenza, “Effects of global climate change on geographic distributions of Mexican Cracidae,” Ecological Modelling, vol. 144, no. 1, pp. 21–30, 2001.
[43]
V. Sánchez-Cordero, P. Illoldi-Rangel, T. Escalante, et al., “Deforestation and biodiversity conservation in México,” in Endangered Species: New Research, A. Columbus and L. Kuznetsov, Eds., Nova Science, 2009.
[44]
A. T. Peterson, J. T. Bauer, and J. N. Mills, “Ecologic and geographic distribution of filovirus disease,” Emerging Infectious Diseases, vol. 10, no. 1, pp. 40–47, 2004.
[45]
R. S. Levine, A. T. Peterson, K. L. Yorita, D. Carroll, I. K. Damon, and M. G. Reynolds, “Ecological niche and geographic distribution of human monkeypox in Africa,” PLoS ONE, vol. 2, no. 1, article e176, 2007.
[46]
A. T. Peterson and K. P. Cohoon, “Sensitivity of distributional prediction algorithms to geographic data completeness,” Ecological Modelling, vol. 117, no. 1, pp. 159–164, 1999.