Genetic association studies of leprosy cohorts across the world have identified numerous polymorphisms which alter susceptibility and outcome to infection with Mycobacterium leprae. As expected, many of the polymorphisms reside within genes that encode components of the innate and adaptive immune system. Despite the preponderance of these studies, our understanding of the mechanisms that underlie these genetic associations remains sparse. Toll-like receptors (TLRs) have emerged as an essential family of innate immune pattern recognition receptors which play a pivotal role in host defense against microbes, including pathogenic strains of mycobacteria. This paper will highlight studies which have uncovered the association of specific TLR gene polymorphisms with leprosy or tuberculosis: two important diseases resulting from mycobacterial infection. This analysis will focus on the potential influence these polymorphic variants have on TLR expression and function and how altered TLR recognition or signaling may contribute to successful antimycobacterial immunity. 1. Introduction Mycobacterium leprae is an evolutionarily ancient pathogen of historical and worldwide prevalence. Identified in 1873 by Gerhard Armauer Hansen as the causative agent of leprosy, these fastidious, intracellular bacilli have been studied extensively for their complex pathogenesis and host interactions. Cellular tropisms for M. leprae principally include tissue-resident macrophages, especially in the skin and upper respiratory tract, and Schwann cells of the peripheral nervous system. The intricate spectrum of clinical manifestations which exists for the disease is illustrated by two polar responses, tuberculoid or lepromatous leprosy, and various intermediate or borderline forms [1]. The tuberculoid manifestation is typically less severe and is characterized by lower leprosy burden and containment of bacilli by distinct granulomas. This form exhibits few hypopigmented skin lesions and scarce thickening of peripheral nerves, leading to loss of sensation in extremities and the skin. Lepromatous leprosy constitutes the opposite polar reaction to infection where high, diffuse bacterial load can cause extensive skin plaques, nodules and thickening, and numerous anesthetic zones due to pervasive peripheral nerve damage. Surprisingly little genotypic variation exists between strains of M. leprae, a fact inconsistent with the high degree of variability in virulence and disease penetrance between individuals. This suggests that success of infection and leprosy progression rests in large part
References
[1]
D. Montoya and R. L. Modlin, “Learning from Leprosy. Insight into the human innate immune response,” Advances in Immunology, vol. 105, no. C, pp. 1–24, 2010.
[2]
A. O. Aliprantis, R. B. Yang, M. R. Mark et al., “Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2,” Science, vol. 285, no. 5428, pp. 736–739, 1999.
[3]
A. Yoshimura, E. Lien, R. R. Ingalls, E. Tuomanen, R. Dziarski, and D. Golenbock, “Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2,” Journal of Immunology, vol. 163, no. 1, pp. 1–5, 1999.
[4]
O. Takeuchi, S. Sato, T. Horiuchi et al., “Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins,” Journal of Immunology, vol. 169, no. 1, pp. 10–14, 2002.
[5]
T. K. Means, E. Lien, A. Yoshimura, S. Wang, D. T. Golenbock, and M. J. Fenton, “The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for toll-like receptors,” Journal of Immunology, vol. 163, no. 12, pp. 6748–6755, 1999.
[6]
T. K. Means, S. Wang, E. Lien, A. Yoshimura, D. T. Golenbock, and M. J. Fenton, “Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis,” Journal of Immunology, vol. 163, no. 7, pp. 3920–3927, 1999.
[7]
R. Schwandner, R. Dziarski, H. Wesche, M. Rothe, and C. J. Kirschning, “Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2,” Journal of Biological Chemistry, vol. 274, no. 25, pp. 17406–17409, 1999.
[8]
R. I. Tapping and P. S. Tobias, “Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling,” Journal of Endotoxin Research, vol. 9, no. 4, pp. 264–268, 2003.
[9]
J. Chan, X. Fan, S. W. Hunter, P. J. Brennan, and B. R. Bloom, “Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages,” Infection and Immunity, vol. 59, no. 5, pp. 1755–1761, 1991.
[10]
G. Kaplan, R. R. Gandhi, and D. E. Weinstein, “Mycobacterium leprae antigen-induced suppression of T cell proliferation in vitro,” Journal of Immunology, vol. 138, no. 9, pp. 3028–3034, 1987.
[11]
L. D. Sibley, S. W. Hunter, P. J. Brennan, and J. L. Krahenbuhl, “Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages,” Infection and Immunity, vol. 56, no. 5, pp. 1232–1236, 1988.
[12]
S. R. Krutzik, M. T. Ochoa, P. A. Sieling et al., “Activation and regulation of Toll-like receptors 2 and 1 in human leprosy,” Nature Medicine, vol. 9, no. 5, pp. 525–532, 2003.
[13]
H. Diaz-Silvestre, P. Espinosa-Cueto, A. Sanchez-Gonzalez et al., “The 19-kDa antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria,” Microbial Pathogenesis, vol. 39, no. 3, pp. 97–107, 2005.
[14]
N. Banaiee, E. Z. Kincaid, U. Buchwald, W. R. Jacobs, and J. D. Ernst, “Potent inhibition of macrophage responses to IFN-γ by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2,” Journal of Immunology, vol. 176, no. 5, pp. 3019–3027, 2006.
[15]
M. G. Drage, N. D. Pecora, A. G. Hise et al., “TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis,” Cellular Immunology, vol. 258, no. 1, pp. 29–37, 2009.
[16]
S. M. Fortune, A. Solache, A. Jaeger et al., “Mycobacterium tuberculosis inhibits macrophage responses to IFN-γ through myeloid differentiation factor 88-dependent and -independent mechanisms,” Journal of Immunology, vol. 172, no. 10, pp. 6272–6280, 2004.
[17]
A. J. Gehring, R. E. Rojas, D. H. Canaday, D. L. Lakey, C. V. Harding, and W. H. Boom, “The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-regulated HLA-DR and FcγR1 on human macrophages through toll-like receptor 2,” Infection and Immunity, vol. 71, no. 8, pp. 4487–4497, 2003.
[18]
W. P. Lafuse, G. R. Alvarez, H. M. Curry, and B. S. Zwilling, “Mycobacterium tuberculosis and Mycobacterium avium inhibit IFN-γ-induced gene expression by TLR2-dependent and independent pathways,” Journal of Interferon and Cytokine Research, vol. 26, no. 8, pp. 548–561, 2006.
[19]
R. N. Mahon, R. E. Rojas, S. A. Fulton, J. L. Franko, C. V. Harding, and W. H. Boom, “Mycobacterium tuberculosis cell wall glycolipids directly inhibit CD4 + T-cell activation by interfering with proximal T-cell-receptor signaling,” Infection and Immunity, vol. 77, no. 10, pp. 4574–4583, 2009.
[20]
E. H. Noss, R. K. Pai, T. J. Sellati et al., “Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis,” Journal of Immunology, vol. 167, no. 2, pp. 910–918, 2001.
[21]
R. K. Pai, M. Convery, T. A. Hamilton, W. Henry Boom, and C. V. Harding, “Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion,” Journal of Immunology, vol. 171, no. 1, pp. 175–184, 2003.
[22]
M. E. Pennini, R. K. Pai, D. C. Schultz, W. H. Boom, and C. V. Harding, “Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-γ-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling,” Journal of Immunology, vol. 176, no. 7, pp. 4323–4330, 2006.
[23]
R. K. Pai, M. E. Pennini, A. A. R. Tobian, D. H. Canaday, W. H. Boom, and C. V. Harding, “Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages,” Infection and Immunity, vol. 72, no. 11, pp. 6603–6614, 2004.
[24]
M. Harboe, T. Oettinger, H. G. Wiker, I. Rosenkrands, and P. Andersen, “Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG,” Infection and Immunity, vol. 64, no. 1, pp. 16–22, 1996.
[25]
A. L. Sorensen, S. Nagai, G. Houen, P. Andersen, and A. B. Andersen, “Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis,” Infection and Immunity, vol. 63, no. 5, pp. 1710–1717, 1995.
[26]
S. K. Pathak, S. Basu, K. K. Basu et al., “Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages,” Nature Immunology, vol. 8, no. 6, pp. 610–618, 2007.
[27]
A. Geluk, K. E. Van Meijgaarden, K. L. M. C. Franken et al., “Identification and characterization of the ESAT-6 homologue of Mycobacterium leprae and T-cell cross-reactivity with Mycobacterium tuberculosis,” Infection and Immunity, vol. 70, no. 5, pp. 2544–2548, 2002.
[28]
Y. Bulut, K. S. Michelsen, L. Hayrapetian et al., “Mycobacterium tuberculosis heat shock proteins use diverse toll-like receptor pathways to activate pro-inflammatory signals,” Journal of Biological Chemistry, vol. 280, no. 22, pp. 20961–20967, 2005.
[29]
A. Cehovin, A. R. M. Coates, Y. Hu et al., “Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis,” Infection and Immunity, vol. 78, no. 7, pp. 3196–3206, 2010.
[30]
D. Jung, S. K. Jeong, C. -M. Lee et al., “Enhanced efficacy of therapeutic cancer vaccines produced by Co-treatment with mycobacterium tuberculosis heparin-binding hemagglutinin, a novel TLR4 agonist,” Cancer Research, vol. 71, no. 8, pp. 2858–2870, 2011.
[31]
P. Y. Bochud, D. Sinsimer, A. Aderem et al., “Polymorphisms in toll-like receptor 4 (TLR4) are associated with protection against leprosy,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 9, pp. 1055–1065, 2009.
[32]
T. H. Chuang and R. J. Ulevitch, “Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9,” European Cytokine Network, vol. 11, no. 3, pp. 372–378, 2000.
[33]
C. A. Leifer, M. N. Kennedy, A. Mazzoni, C. Lee, M. J. Kruhlak, and D. M. Segal, “TLR9 is localized in the endoplasmic reticulum prior to stimulation,” Journal of Immunology, vol. 173, no. 2, pp. 1179–1183, 2004.
[34]
P. Ahmad-Nejad, H. H?cker, M. Rutz, S. Bauer, R. M. Vabulas, and H. Wagner, “Bacterial CpG-DNA and lipopolysaccharides activate toll-like receptors at distinct cellular compartments,” European Journal of Immunology, vol. 32, no. 7, pp. 1958–1968, 2002.
[35]
A. K. Kiemer, R. H. Senaratne, J. Hoppst?dter et al., “Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria,” Journal of Innate Immunity, vol. 1, no. 1, pp. 29–45, 2008.
[36]
A. Bafica, C. A. Scanga, C. G. Feng, C. Leifer, A. Cheever, and A. Sher, “TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis,” Journal of Experimental Medicine, vol. 202, no. 12, pp. 1715–1724, 2005.
[37]
T. R. Hawn, E. A. Misch, S. J. Dunstan et al., “A common human TLR1 polymorphism regulates the innate immune response to lipopeptides,” European Journal of Immunology, vol. 37, no. 8, pp. 2280–2289, 2007.
[38]
C. M. Johnson, E. A. Lyle, K. O. Omueti et al., “Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy,” Journal of Immunology, vol. 178, no. 12, pp. 7520–7524, 2007.
[39]
E. A. Misch, M. Macdonald, C. Ranjit et al., “Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction,” PLoS Neglected Tropical Diseases, vol. 2, no. 5, article e231, 2008.
[40]
X. Ma, Y. Liu, B. B. Gowen, E. A. Graviss, A. G. Clark, and J. M. Musser, “Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease,” PLoS ONE, vol. 2, no. 12, Article ID e1318, 2007.
[41]
S. H. Wong, S. Gochhait, D. Malhotra et al., “Leprosy and the adaptation of human toll-like receptor 1,” PLoS Pathogens, vol. 6, no. 7, Article ID e1000979, pp. 1–9, 2010.
[42]
R. P. Schilling, L. Hamann, W. R. Faber et al., “Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions,” Journal of Infectious Diseases, vol. 199, no. 12, pp. 1816–1819, 2009.
[43]
H.-D. Nischalke, M. Coenen, C. Berger et al., “The toll-like receptor 2 (TLR2)-196 to-174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C,” International Journal of Cancer, vol. 130, no. 6, pp. 1470–1475, 2011.
[44]
E. Noguchi, F. Nishimura, H. Fukai et al., “An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population,” Clinical and Experimental Allergy, vol. 34, no. 2, pp. 177–183, 2004.
[45]
D. R. Velez, C. Wejse, M. E. Stryjewski et al., “Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans,” Human Genetics, vol. 127, no. 1, pp. 65–73, 2010.
[46]
P. Y. Bochud, T. R. Hawn, M. R. Siddiqui et al., “Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy,” Journal of Infectious Diseases, vol. 197, no. 2, pp. 253–261, 2008.
[47]
J.-J. Yim, L. Ding, A. A. Sch?ffer, G. Y. Park, Y.-S. Shim, and S. M. Holland, “A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences,” FEMS Immunology and Medical Microbiology, vol. 40, no. 2, pp. 163–169, 2004.
[48]
N. T. T. Thuong, T. R. Hawn, G. E. Thwaites et al., “A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis,” Genes and Immunity, vol. 8, no. 5, pp. 422–428, 2007.
[49]
E. Lorenz, J. P. Mira, K. L. Cornish, N. C. Arbour, and D. A. Schwartz, “A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection,” Infection and Immunity, vol. 68, no. 11, pp. 6398–6401, 2000.
[50]
N. W.J. Schr?der, I. Diterich, A. Zinke et al., “Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage lyme disease,” Journal of Immunology, vol. 175, no. 4, pp. 2534–2540, 2005.
[51]
A. C. Ogus, B. Yoldas, T. Ozdemir et al., “The Arg753Gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease,” European Respiratory Journal, vol. 23, no. 2, pp. 219–223, 2004.
[52]
N. Dalgic, D. Tekin, Z. Kayaalti et al., “Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis,” Human Immunology, vol. 72, no. 5, pp. 440–445, 2011.
[53]
D. M. Agnese, J. E. Calvano, S. J. Hahm et al., “Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections,” Journal of Infectious Diseases, vol. 186, no. 10, pp. 1522–1525, 2002.
[54]
T. R. Hawn, A. Verbon, M. Janer, L. P. Zhao, B. Beutler, and A. Aderem, “Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires' disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2487–2489, 2005.
[55]
E. Lorenz, J. P. Mira, K. L. Frees, and D. A. Schwartz, “Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock,” Archives of Internal Medicine, vol. 162, no. 9, pp. 1028–1032, 2002.
[56]
M. Fager?s B?ttcher, M. Hmani-Aifa, A. Lindstr?m et al., “A TLR4 polymorphism is associated with asthma and reduced lipopolysaccharide-induced interleukin-12(p70) responses in Swedish children,” Journal of Allergy and Clinical Immunology, vol. 114, no. 3, pp. 561–567, 2004.
[57]
C. Schmitt, A. Humeny, C. M. Becker, K. Brune, and A. Pahl, “Polymorphisms of TLR4: rapid genotyping and reduced response to lipopolysaccharide of TLR4 mutant alleles,” Clinical Chemistry, vol. 48, no. 10, pp. 1661–1667, 2002.
[58]
D. A. Schwartz, “The role of TLR4 in endotoxin responsiveness in humans,” Journal of Endotoxin Research, vol. 7, no. 5, pp. 389–393, 2001.
[59]
R. N. Douville, Y. Lissitsyn, A. F. Hirschfeld et al., “TLR4 Asp299Gly and Thr399ile polymorphisms: no impact on human immune responsiveness to LPS or respiratory syncytial virus,” PLoS ONE, vol. 5, no. 8, Article ID e12087, 2010.
[60]
C. Erridge, J. Stewart, and I. R. Poxton, “Monocytes heterozygous for the Asp299Gly and Thr399Ile mutations in the toll-like receptor 4 gene show no deficit in lipopolysaccharide signalling,” Journal of Experimental Medicine, vol. 197, no. 12, pp. 1787–1791, 2003.
[61]
C. Van Der Graaf, B. J. Kullberg, L. Joosten et al., “Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism,” Cytokine, vol. 30, no. 5, pp. 264–268, 2005.
[62]
N. Najmi, G. Kaur, S. K. Sharma, and N. K. Mehra, “Human Toll-like receptor 4 polymorphisms TLR4 Asp299Gly and Thr399Ile influence susceptibility and severity of pulmonary tuberculosis in the Asian Indian population,” Tissue Antigens, vol. 76, no. 2, pp. 102–109, 2010.
[63]
B. Ferwerda, G. S. Kibiki, M. G. Netea, W. M. V. Dolmans, and A. J. Van Der Ven, “The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania,” AIDS, vol. 21, no. 10, pp. 1375–1377, 2007.
[64]
J. Fitness, S. Floyd, D. K. Warndorff et al., “Large-scale candidate gene study of leprosy susceptibility in the Karonga district of northern Malawi,” American Journal of Tropical Medicine and Hygiene, vol. 71, no. 3, pp. 330–340, 2004.
[65]
A. M. Cooper, D. K. Dalton, T. A. Stewart, J. P. Griffin, D. G. Russell, and I. M. Orme, “Disseminated tuberculosis in interferon γ gene-disrupted mice,” Journal of Experimental Medicine, vol. 178, no. 6, pp. 2243–2247, 1993.
[66]
J. A. Cunningham, J. D. Kellner, P. J. Bridge, C. L. Trevenen, D. R. McLeod, and H. D. Davies, “Disseminated bacille Calmette-Guerin infection in an infant with a novel deletion in the interferon-gamma receptor gene,” International Journal of Tuberculosis and Lung Disease, vol. 4, no. 8, pp. 791–794, 2000.
[67]
P. Kumar, R. Agarwal, I. Siddiqui, H. Vora, G. Das, and P. Sharma, “ESAT6 differentially inhibits IFN-γ-inducible class II transactivator isoforms in both a TLR2-dependent and -independent manner,” Immunology and Cell Biology. In press.
[68]
M. E. Pennini, Y. Liu, J. Yang, C. M. Croniger, W. Henry Boom, and C. V. Harding, “CCAAT/enhancer-binding protein β and δ binding to CIITA promoters is associated with the inhibition of CIITA expression in response to Mycobacterium tuberculosis 19-kDa lipoprotein,” Journal of Immunology, vol. 179, no. 10, pp. 6910–6918, 2007.
[69]
I. Pulido, M. Leal, M. Genebat, Y. M. Pacheco, M. E. Sáez, and N. Soriano-Sarabia, “The TLR4 ASP299GLY polymorphism is a risk factor for active tuberculosis in caucasian HIV-infected patients,” Current HIV Research, vol. 8, no. 3, pp. 253–258, 2010.
[70]
P. Das, A. Lahiri, A. Lahiri, and D. Chakravortty, “Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator,” PLoS Pathogens, vol. 6, no. 6, article e1000899, 2010.
[71]
M. T. Talaue, V. Venketaraman, M. H. Hazbón et al., “Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection,” Journal of Bacteriology, vol. 188, no. 13, pp. 4830–4840, 2006.
[72]
K. C. El Kasmi, J. E. Qualls, J. T. Pesce et al., “Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens,” Nature Immunology, vol. 9, no. 12, pp. 1399–1406, 2008.
[73]
J. E. Qualls, G. Neale, A. M. Smith et al., “Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling,” Science Signaling, vol. 3, no. 135, p. ra62, 2010.
[74]
E. Spierings, T. De Boer, B. Wieles, L. B. Adams, E. Marani, and T. H. M. Ottenhoff, “Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy,” Journal of Immunology, vol. 166, no. 10, pp. 5883–5888, 2001.
[75]
R. B. Oliveira, M. T. Ochoa, P. A. Sieling et al., “Expression of toll-like receptor 2 on human schwann cells: a mechanism of nerve damage in leprosy,” Infection and Immunity, vol. 71, no. 3, pp. 1427–1433, 2003.
[76]
S. Goethals, E. Ydens, V. Timmerman, and S. Janssens, “Toll-like receptor expression in the peripheral nerve,” GLIA, vol. 58, no. 14, pp. 1701–1709, 2010.
[77]
M. López, L. M. Sly, Y. Luu, D. Young, H. Cooper, and N. E. Reiner, “The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through toll-like receptor-2,” Journal of Immunology, vol. 170, no. 5, pp. 2409–2416, 2003.
[78]
G. Robbins, V. Mushrif Tripathy, V. N. Misra et al., “Ancient skeletal evidence for leprosy in India (2000 B.C.),” PLoS ONE, vol. 4, no. 5, Article ID e5669, 2009.
[79]
I. Hershkovitz, H. D. Donoghue, D. E. Minnikin et al., “Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a neolithic settlement in the Eastern mediterranean,” PLoS ONE, vol. 3, no. 10, Article ID e3426, 2008.
[80]
L. B. Barreiro, M. Ben-Ali, H. Quach et al., “Evolutionary dynamics of human toll-like receptors and their different contributions to host defense,” PLoS Genetics, vol. 5, no. 7, Article ID e1000562, 2009.
[81]
D. Enard, F. Depaulis, and H. R. Crollius, “Human and non-human primate genomes share hotspots of positive selection,” PLoS Genetics, vol. 6, no. 2, Article ID e1000840, 2010.