全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transmission Attributes of Periurban Malaria in Lusaka, Zambia, Precedent to the Integrated Vector Management Strategy: An Entomological Input

DOI: 10.1155/2012/873852

Full-Text   Cite this paper   Add to My Lib

Abstract:

Globalization and urbanization with their inherent developmental activities and ecological transformations impact on malaria epidemiology. Entomological factors involved in malaria transmission in periurban Lusaka were assessed prior to vector control reintroduction. Data was collected through standard entomological and epidemiological protocols and a pretested structured questionnaire. Larval habitats were characterized as transient (43%), semipermanent (36%), and permanent (21%). Anopheles arabiensis and An. gambiae ss. were the only vectors identified. A shift in vector population was noted, with the later outnumbering the former. Plasmodium falciparum monoinfection rates were 25.6% (95% CI: 20.9–30.7) ( ). Parasitaemia was 31.8% (95% CI: 23.2–42.2), 25.7% (95% CI: 13.5–41.3), and 23.3% (95% CI: 17.4–29.6) in under 5, 5 to 14, and above 15 age groups, respectively. Low knowledge levels on vector control tools with an average of 7 residents per household were also observed. This study confirmed a local malaria transmission paradigm. The epidemiology necessitated deployment of an integrated vector management strategy with intensified information education and communication. 1. Introduction Malaria remains a serious global health problem, killing more than one million people per year. The global community has recently had many successes in malaria control. The number of malaria cases has fallen by more than 50% in 43 countries over the past decade [1]. A modeling analysis of malaria prevention activities in 34 African countries suggested that about 730,000 lives were saved between 2000 and 2010, with nearly three quarters of those since 2006 [2]. Funding commitments for malaria have increased nearly 15-fold, from approximately US$ 100 million in 2003 to nearly US$ 1.6 billion in 2010; interest and commitment at global and country levels are very high [3]. However, the problem of malaria parasite transmission remains enormously grave in sub-Saharan Africa where at least 85 to 90% of deaths are attributable to the disease [4–7]. Malaria transmission is driven by a complex interaction of the vector, parasite, human host, and the environment, and is governed by different ecological and social determinants [8, 9]. Globalization and urbanization with their inherent developmental activities and associated ecological transformations have a significant impact on malaria epidemiology [10, 11] and have invariably exacerbated the situation. Malaria transmission depends markedly on local environmental conditions and other compounding factors, that is, presence of

References

[1]  WHO, “World Malaria Report,” Tech. Rep., World Health Organization, Geneva, Switzerland, 2012.
[2]  T. P. Eisele, D. A. Larsen, N. Walker et al., “Estimates of child deaths prevented from malaria prevention scale-up in Africa 2001–2010,” Malaria Journal, vol. 11, article 93, 2012.
[3]  T. P. Eisele, D. Larsen, and R. W. Steketee, “Protective efficacy of interventions for preventing malaria mortality in children in Plasmodium falciparum endemic areas,” International Journal of Epidemiology, vol. 39, pp. i88–101, 2010.
[4]  J. G. Breman, A. Egan, and G. T. Keusch, “The intolerable burden of malaria: a new look at the numbers,” American Journal of Tropical Medicine and Hygiene, vol. 64, no. 1-2, pp. 4–7, 2001.
[5]  R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of Plasmodium falciparum malaria,” Nature, vol. 434, no. 7030, pp. 214–217, 2005.
[6]  C. A. Guerra, R. W. Snow, and S. I. Hay, “Defining the global spatial limits of malaria transmission in 2005,” Advances in Parasitology, vol. 62, pp. 157–179, 2006.
[7]  J. G. Breman, M. S. Alilio, and A. Mills, “Conquering the intolerable burden of malaria: what's new, what's needed: a summary,” American Journal of Tropical Medicine and Hygiene, vol. 71, no. 2, pp. 1–15, 2004.
[8]  S. I. Hay, “Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease,” Annals of Tropical Medicine and Parasitology, vol. 90, no. 1, pp. 1–19, 1996.
[9]  A. Daash, A. Srivastava, B. N. Nagpal, R. Saxena, and S. K. Gupta, “Geographical information system (GIS) in decision support to control malaria—a case study of Koraput district in Orissa, India,” Journal of Vector Borne Diseases, vol. 46, no. 1, pp. 72–74, 2009.
[10]  S. I. Hay, C. A. Guerra, A. J. Tatem, P. M. Atkinson, and R. W. Snow, “Urbanization, malaria transmission and disease burden in Africa,” Nature Reviews Microbiology, vol. 3, no. 1, pp. 81–90, 2005.
[11]  J. Keiser, J. Utzinger, M. Caldas De Castro, T. A. Smith, M. Tanner, and B. H. Singer, “Urbanization in sub-Saharan Africa and implication for malaria control,” American Journal of Tropical Medicine and Hygiene, vol. 71, no. 2, pp. 118–127, 2004.
[12]  K. I. Barnes, F. Little, A. Mabuza et al., “Increased gametocytemia after treatment: an early parasitological indicator of emerging sulfadoxine-pyrimethamine resistance in falciparum malaria,” Journal of Infectious Diseases, vol. 197, no. 11, pp. 1605–1613, 2008.
[13]  J. Hemingway and H. Ranson, “Insecticide resistance in insect vectors of human disease,” Annual Review of Entomology, vol. 45, pp. 371–391, 2000.
[14]  J. Keiser, M. C. De Castro, M. F. Maltese et al., “Effect of irrigation and large dams on the burden of malaria on a global and regional scale,” American Journal of Tropical Medicine and Hygiene, vol. 72, no. 4, pp. 392–406, 2005.
[15]  P. Martens and L. Hall, “Malaria on the move: human population movement and malaria transmission,” Emerging Infectious Diseases, vol. 6, no. 2, pp. 103–109, 2000.
[16]  B. Greenwood and T. Mutabingwa, “Malaria in 2002,” Nature, vol. 415, no. 6872, pp. 670–672, 2002.
[17]  W. A. Chinery, “Effects of ecological changes on the malaria vectors Anopheles funestus and the Anopheles gambiae complex of mosquitoes in Accra, Ghana,” Journal of Tropical Medicine and Hygiene, vol. 87, no. 2, pp. 75–81, 1984.
[18]  W. Mc Wilsons, P. Billing, D. Bendahmane, and P. Wijeyanratne, “Malaria in rural and peri-urban areas in Sub-Saharan Africa,” Environmental Health Project Activity Report 71, 1999.
[19]  S. J. Wang, C. Lengeler, T. A. Smith et al., “Rapid urban malaria appraisal (RUMA) in sub-Saharan Africa,” Malaria Journal, vol. 4, article 40, 2005.
[20]  D. Modiano, B. S. Sirima, A. Sawadogo et al., “Severe malaria in Burkina Faso: urban and rural environment,” Parassitologia, vol. 41, no. 1-3, pp. 251–254, 1999.
[21]  A. B. Knudsen and R. Slooff, “Vector-borne disease problems in rapid urbanization: new approaches to vector control,” Bulletin of the World Health Organization, vol. 70, no. 1, pp. 1–6, 1992.
[22]  Y. A. Afrane, E. Klinkenberg, P. Drechsel, K. Owusu-Daaku, R. Garms, and T. Kruppa, “Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana?” Acta Tropica, vol. 89, no. 2, pp. 125–134, 2004.
[23]  V. Robert, H. P. Awono-Ambene, and J. Thioulouse, “Ecology of Larval mosquitoes, with special reference to Anopheles arabiensis (Diptera: Culcidae) in Market-Garden Wells in Urban Dakar, Senegal,” Journal of Medical Entomology, vol. 35, no. 6, pp. 948–955, 1998.
[24]  L. M. Barat, B. Himonga, S. Nkunika et al., “A systematic approach to the development of a rational malaria treatment policy in Zambia,” Tropical Medicine and International Health, vol. 3, no. 7, pp. 535–542, 1998.
[25]  N. Ng'andu, T. E. Watts, J. R. Wray, C. Chela, and B. Zulu, “Some risk factors for transmission of malaria in a population where control measures were applied in Zambia,” East African Medical Journal, vol. 66, no. 11, pp. 728–737, 1989.
[26]  G. J. Blom, K. S. Baboo, U. H. Athale, and T. S. Van Der Werf, “Plasmodium falciparum malaria in vivo drug sensitivity in Lusaka, Zambia,” Central African Journal of Medicine, vol. 41, no. 1, pp. 6–10, 1995.
[27]  Central Statistical Office, “Zambia National Census Report,” Tech. Rep., 2000.
[28]  WHO, Manual on Practical Entomology in Malaria. PartII: Methods and Techniques, 1975.
[29]  M. T. Gillies and M. Coetzee, A Supplement to the Anophelinae of Africa South of the Sahara (Afro-Tropical Region), vol. 55, South African Institute for Medical Research, Johannesburg, South Africa, 1987.
[30]  M. T. Gillies and B. A. De Meillon, The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region), vol. 54, South African Institute for Medical Research, Johannesburg, 2nd edition, 1968.
[31]  J. A. Scott, W. G. Brogdon, and F. H. Collins, “Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction,” American Journal of Tropical Medicine and Hygiene, vol. 49, no. 4, pp. 520–529, 1993.
[32]  World Heath Organization, “Basic laboratory methods in medical parasitology,” in Basic Malaria Microscopy, Part I, WHO, Geneva, Switzerland, 1991.
[33]  MoH, National Malaria Strategic Plan 2006–2011: A Road Map for RBM Impact in Zambia, Ministry of Health, Lusaka, Zambia, 2006.
[34]  G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, UK, 1957.
[35]  W. R. Bransby-Williams, “House catches of adult Anopheles gambiae species B in two areas of Zambia,” East African Medical Journal, vol. 56, no. 11, pp. 557–561, 1979.
[36]  A. J. Shelley, “Observations on the behaviour of Anopheles gambiae sp. B in Kambole village in the Zambesi valley, Zambia,” Annals of Tropical Medicine and Parasitology, vol. 67, no. 2, pp. 237–248, 1973.
[37]  D. J. Rogers, S. E. Randolph, R. W. Snow, and S. I. Hay, “Satellite imagery in the study and forecast of malaria,” Nature, vol. 415, no. 6872, pp. 710–715, 2002.
[38]  M. Watson, African Highway: the Battle for Health in Central Africa, John Murray, London, UK, 1953.
[39]  J. Utzinger, Y. Tozan, and B. H. Singer, “Efficacy and cost-effectiveness of environmental management for malaria control,” Tropical Medicine and International Health, vol. 6, no. 9, pp. 677–687, 2001.
[40]  B. De Meillon, “A note on An. gambiae and An. funestus in Northern Rhodesia,” Entomolgoical Studies, article 7, p. 306, 1937.
[41]  P. C. G. Adams, “Some observations on the flight of stained anophelines at Nkana, Northern Rhodesia,” Annals of Tropical Medicine and Parasitology, pp. 34–35, 1940.
[42]  D. Pielou, “Anopheline mosquitoes breeding in fish dams, pools, and streams in Northern Rhodesia,” Proceedings of the Royal Entomological Society of London, vol. 22, pp. 18–23, 1947.
[43]  H. E. Paterson, “The species, species control and antimalarial spraying campaigns, implications of recent work on the An. gambiae complex,” South African Journal of Medical Science, vol. 28, pp. 33–44, 1963.
[44]  A. Zahar, “Vector bionomics in the epidemiology and control of malaria,” Part I, the WHO African Region & the Southern WHO Eastern Mediterranean Region. Section III., (Equatorial Africa) (Southern Africa) WHO/VBC/85.2, World Health Organization, Geneva, Switzerlands.
[45]  E. Chanda, J. Hemingway, I. Kleinschmidt et al., “Insecticide resistance and the future of malaria control in Zambia,” PLoS One, vol. 6, no. 9, Article ID e24336, 2011.
[46]  J. E. Gimmg, M. Ombok, L. Kamau, and W. A. Hawley, “Characteristics of larval anopheline (Diptera: Culicidae) habitats in western Kenya,” Journal of Medical Entomology, vol. 38, no. 2, pp. 282–288, 2001.
[47]  V. A. Wagbatsoma and O. Ogbeide, “Towards malaria control in Nigeria: a qualitative study on the population of mosquitoes,” Journal of the Royal Society of Health, vol. 115, no. 6, pp. 363–365, 1995.
[48]  S. W. Lindsay, L. Parson, and C. J. Thomas, “Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data,” Proceedings of the Royal Society B, vol. 265, no. 1399, pp. 847–854, 1998.
[49]  MoH, National Malaria Situation Analysis, Ministry of Health, Lusaka, Zambia, 2000.
[50]  R. W. Wenlock, “The incidence of Plasmodium parasites in rural Zambia,” East African Medical Journal, vol. 55, no. 6, pp. 268–276, 1978.
[51]  N. Sipilanyambe, J. L. Simon, P. Chanda, P. Olumese, R. W. Snow, and D. H. Hamer, “From chloroquine to artemether-lumefantrine: the process of drug policy change in Zambia,” Malaria Journal, vol. 7, article 25, 2008.
[52]  L. J. Bruce-Chwatt, Essential Malariology, John Willey & Sons, New York, NY, USA, 2nd edition, 1985.
[53]  United Nations Population Fund, State of the World Population: Sub-Saharan Africa, UNPF, Geneva, Switzerland, 1996.
[54]  P. Muentener, P. Schlagenhauf, and R. Steffen, “Imported malaria (1985–95): trends and perspectives,” Bulletin of the World Health Organization, vol. 77, no. 7, pp. 560–566, 1999.
[55]  K. A. Lindblade, E. D. Walker, A. W. Onapa, J. Katungu, and M. L. Wilson, “Highland malaria in Uganda: prospective analysis of an epidemic associated with El Nino,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 93, no. 5, pp. 480–487, 1999.
[56]  M. Albonico, F. De Giorgi, J. Razanakolona et al., “Control of epidemic malaria on the Highlands of Madagascar,” Parassitologia, vol. 41, no. 1-3, pp. 373–376, 1999.
[57]  E. Chanda, F. Masaninga, M. Coleman et al., “Integrated vector management: the Zambian experience,” Malaria Journal, vol. 7, article no. 164, 2008.
[58]  MoH, “Zambia National Malaria Indicator,” Survey Report 2008, Ministry of Health, Lusaka, Zambia, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133