全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Maximum Likelihood Analyses of 3,490 rbcL Sequences: Scalability of Comprehensive Inference Versus Group-Specific Taxon Sampling

Full-Text   Cite this paper   Add to My Lib

Abstract:

The constant accumulation of sequence data poses new computational and methodological challenges for phylogenetic inference, since multiple sequence alignments grow both in the horizontal (number of base pairs, phylogenomic alignments) as well as vertical (number of taxa) dimension. Put aside the ongoing controversial discussion about appropriate models, partitioning schemes, and assembly methods for phylogenomic alignments, coupled with the high computational cost to infer these, for many organismic groups, a sufficient number of taxa is often exclusively available from one or just a few genes (e.g., rbcL, matK, rDNA). In this paper we address scalability of Maximum-Likelihood-based phylogeny reconstruction with respect to the number of taxa by example of several large nested single-gene rbcL alignments comprising 400 up to 3,491 taxa. In order to test the effect of taxon sampling, we employ an appropriately adapted taxon jackknifing approach. In contrast to standard jackknifing, this taxon subsampling procedure is not conducted entirely at random, but based on drawing subsamples from empirical taxon-groups which can either be user-defined or determined by using taxonomic information from databases. Our results indicate that, despite an unfavorable number of sequences to number of base pairs ratio, i.e., many relatively short sequences, Maximum Likelihood tree searches and bootstrap analyses scale well on single-gene rbcL alignments with a dense taxon sampling up to several thousand sequences. Moreover, the newly implemented taxon subsampling procedure can be beneficial for inferring higher level relationships and interpreting bootstrap support from comprehensive analysis.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133