Metallic biomaterials have been extensively used in orthodontics throughout history. Gold, stainless steel, cobalt-chromium alloys, titanium and its alloys, among other metallic biomaterials, have been part of the orthodontic armamentarium since the twentieth century. Metals and alloys possess outstanding properties and offer numerous possibilities for the fabrication of orthodontic devices such as brackets, wires, bands, ligatures, among others. However, these materials have drawbacks that can present problems for the orthodontist. Poor friction control, allergic reactions, and metal ionic release are some of the most common disadvantages found when using metallic alloys for manufacturing orthodontic appliances. In order to overcome such weaknesses, research has been conducted aiming at different approaches, such as coatings and surface treatments, which have been developed to render these materials more suitable for orthodontic applications. The purpose of this paper is to provide an overview of the coating and surface treatment methods performed on metallic biomaterials used in orthodontics.
References
[1]
Park, J.B.; Kim, Y.K. Metallic Biomaterials. In The Biomedical Engineering Handbook, 2nd; Bronzino, J.D., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2000.
[2]
García, C. Bioactivación de metales de uso ortopédico mediante recubrimientos producidos por sol-gel. Ph.D. Thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2004.
[3]
Brantley, W.A.; Eliades, T. Orthodontic Materials: Scientific and Clinical Aspects; Thieme: New York, NY, USA, 2001.
[4]
Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implants 1986, 1, 11–25.
[5]
Palmquist, A.; Omar, O.M.; Esposito, M.; Lausmaa, J.; Thomsen, P. Titanium oral implants: Surface characteristics, interface biology and clinical outcome. J. R. Soc. Interface 2010, 7, S515–S527, doi:10.1098/rsif.2010.0118.focus.
[6]
El-Zohairy, M.A.; Mostafa, A.; Amin, A.; Abd El-Fattah, H.; Khalifa, S. Mandibular reconstruction using pectoralis major myocutaneous flap and titanium plates after ablative surgery for locally advanced tumors of the oral cavity. J. Egypt Natl. Canc. Inst. 2009, 21, 299–307.
[7]
Lethaus, B.; Kessler, P.; Boeckman, R.; Poort, L.J.; Tolba, R. Reconstruction of a maxillary defect with a fibula graft and titanium mesh using CAD/CAM techniques. Head Face Med. 2010, 6, 16, doi:10.1186/1746-160X-6-16.
[8]
Stoetzer, M.; Rana, M.; von See, C.; Eckardt, A.M.; Gellrich, N.-C. Reconstruction of defects of maxillary sinus wall after removal of a huge odontogenic lesion using prebended 3D titanium-mesh and CAD/CAM technique. Head Face Med. 2011, 7, 21, doi:10.1186/1746-160X-7-21.
[9]
Nakajima, H.; Okabe, T. Titanium in dentistry: Development and research in the USA. Dent. Mater. J. 1996, 15, 77–90, doi:10.4012/dmj.15.77.
[10]
Ferreira, M.A.; Luersen, M.A.; Borges, P.C. Nickel-titanium alloys: A systematic review. J. Orthod. 2012, 17, 71–82.
[11]
Parvizi, F.; Rock, W.P. The load/deflection characteristics of thermally activated orthodontic archwires. Eur. J. Orthod. 2003, 25, 417–421, doi:10.1093/ejo/25.4.417.
[12]
ASTM F136-12a Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401). Available online: http://www.astm.org/Standards/F136.htmn (accessed on 19 December 2012).
[13]
ASTM F67-06 Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). Available online: http://www.astm.org/Standards/F67.htm (accessed on 19 December 2012).
[14]
Sfondrini, M.F.; Cacciafesta, V.; Maffia, E.; Massironi, S.; Scribante, A.; Alberti, G.; Biesuz, R.; Klersy, C. Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets. Angle Orthod. 2009, 79, 361–367, doi:10.2319/042108-223.1.
[15]
Kohl, R. Metallurgy in orthodontics. Angle Orthod. 1964, 34, 37–52.
[16]
Roach, M. Base metal alloys used for dental restorations and implants. Dent. Clin. North Am. 2007, 51, 603–627, doi:10.1016/j.cden.2007.04.001.
[17]
Yoo, Y.R.; Jang, S.G.; Oh, K.T.; Kim, J.G.; Kim, Y.S. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels. J. Biomed. Mater. Res. B 2008, 86, 310–320.
[18]
Anusavice, K.J. Phillips Ciencia de los Materiales Dentales, 11th ed.; Elsevier Espa?a: Madrid, Spain, 2004.
[19]
Izquierdo, P.P.; de Biasi, R.S.; Elias, C.N.; Nojima, L.I. Martensitic transformation of austenitic stainless steel orthodontic wires during intraoral exposure. Am. J. Orthod. Dentofacial. Orthop. 2010, 138, doi:10.1016/j.ajodo.2010.05.015.
[20]
Kocijan, A.; Conradi, M. The corrosion behaviour of austenitic and duplex stainless steels in artificial body fluids. Mater. Technol. 2010, 44, 21–24.
[21]
Cardarelli, F. Materials Handbook: A Concise Desktop Reference, 2nd ed.; Springer: London, UK, 2008.
[22]
Craig, H. Stress Corrosion—New Approaches; ASTM International: West Conshohocken, PA, USA, 1976.
[23]
Dionicio Padilla, E. Aplicaciones de los aceros inoxidables. Rev. Inst. Investig. Fac. Minas. Metal Cienc. Geogr. 1999, 2, 11–21.
[24]
Mistakidis, I.; Gkantidis, N.; Topouzelis, N. Review of properties and clinical applications of orthodontic wires. Hell. Orthod. Rev. 2011, 14, 45–66.
[25]
Oh, K.T.; Choo, S.U.; Kim, K.M.; Kim, K.N. A stainless steel bracket for orthodontic application. Eur. J. Orthod. 2005, 27, 237–244, doi:10.1093/ejo/cji005.
[26]
Soratur, S. Essentials of Dental Materials; Jaypee: New Delhi, India, 2002.
[27]
Costa, M.T.; Lenza, M.A.; Gosch, C.S.; Costa, I.; Ribeiro-Dias, F. In vitro evaluation of corrosion and cytotoxicity of orthodontic brackets. J. Dent. Res. 2007, 86, 441–445, doi:10.1177/154405910708600510.
[28]
Edie, J.W.; Andreasen, G.F.; Zaytoun, M.P. Surface corrosion of nitinol and stainless steel under clinical conditions. Angle Orthod. 1981, 51, 319–324.
[29]
Kim, H.; Johnson, J.W. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod. 1999, 69, 39–44.
[30]
Schmalz, G.; Arenholt-Bindslev, D. Biocompatibility of Dental Materials; Springer: Berlin, Germany, 2009.
[31]
Javaherdashti, R. Microbiologically Influenced Corrosion. An Engineered Insight; Springer: London, UK, 2008.
[32]
Anandkumar, B.; Maruthamuthu, S. Molecular identification and corrosion behaviour of manganese oxidizers on orthodontic wires. Curr. Sci. 2008, 94, 891–896.
[33]
House, K.; Sernetz, F.; Dymock, D.; Sandy, J.R.; Ireland, A.J. Corrosion of orthodontic appliances—Should we care? Am. J. Orthod. Dentofacial Orthop. 2008, 133, 584–592, doi:10.1016/j.ajodo.2007.03.021.
[34]
Matos de Souza, R.; Macedo de Menezes, L. Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. Angle Orthod. 2008, 78, 345–350, doi:10.2319/111806-466.1.
[35]
Ehrnrooth, M.; Kerosuo, H. Face and neck dermatitis from a stainless steel orthodontic appliance. Angle Orthod. 2009, 79, 1194–1196, doi:10.2319/092908-509R.1.
[36]
Huang, H.H.; Chiu, Y.H.; Lee, T.H.; Wu, S.C.; Yang, H.W.; Su, K.H.; Hsu, C.C. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 2003, 24, 3585–3592, doi:10.1016/S0142-9612(03)00188-1.
[37]
Jacobsen, N.; Hensten-Pettersen, A. Changes in occupational health problems and adverse patient reactions in orthodontics from 1987 to 2000. Eur. J. Orthod. 2003, 25, 591–598, doi:10.1093/ejo/25.6.591.
[38]
Kanerva, L.; Sipil?inen-Malm, T.; Estlander, T.; Zitting, A.; Jolanki, R.; Tarvainen, K. Nickel release from metals, and a case of allergic contact dermatitis from stainless steel. Contact Dermatitis 1994, 31, 299–303, doi:10.1111/j.1600-0536.1994.tb02023.x.
[39]
Noble, J.; Ahing, S.I.; Karaiskos, N.E.; Wiltshire, W.A. Nickel allergy and orthodontics, a review and report of two cases. Br. Dent. J. 2008, 204, 297–300.
[40]
A?ao?lu, G.; Arun, T.; Izgi, B.; Yarat, A. Nickel and chromium levels in the saliva and serum of patients with fixed orthodontic appliances. Angle Orthod. 2001, 71, 375–379.
[41]
Amini, F.; Borzabadi Farahani, A.; Jafari, A.; Rabbani, M. In vivo study of metal content of oral mucosa cells in patients with and without fixed orthodontic appliances. Orthod. Craniofac. Res. 2008, 11, 51–56, doi:10.1111/j.1601-6343.2008.00414.x.
[42]
Petoumenou, E.; Arndt, M.; Keilig, L.; Reimann, S.; Hoederath, H.; Eliades, T.; J?ger, A.; Bourauel, C. Nickel concentration in the saliva of patients with nickel-titanium orthodontic appliances. Am. J. Orthod. Dentofacial Orthop. 2009, 135, 59–65, doi:10.1016/j.ajodo.2006.12.018.
[43]
Noble, J.; Ahing, S.I.; Karaiskos, N.E.; Wiltshire, W.A. Should I be concerned if a patient requiring orthodontic treatment has an allergy to nickel? J. Can. Dent. Assoc. 2008, 74, 897–898.
[44]
Balenseifen, J.W.; Madonia, J.V. Study of dental plaque in orthodontic patients. J. Dent. Res. 1970, 49, 320–324, doi:10.1177/00220345700490022101.
[45]
Da Cunha, A.C.; Marquezan, M.; Freitas, A.O.; Nojima, L.I. Frictional resistance of orthodontic wires tied with 3 types of elastomeric ligatures. Braz. Oral Res. 2011, 25, 526–530, doi:10.1590/S1806-83242011005000015.
[46]
Angolkar, P.V.; Kapila, S.; Duncanson, M.G., Jr.; Nanda, R.S. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. Am. J. Orthod. Dentofacial Orthop. 1990, 98, 499–506.
[47]
Kapila, S.; Angolkar, P.V.; Duncanson, M.G., Jr.; Nanda, R.S. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. Am. J. Orthod. Dentofacial Orthop. 1990, 98, 117–126, doi:10.1016/0889-5406(90)70005-W.
[48]
Burrow, S.J. Friction and resistance to sliding in orthodontics: A critical review. Am. J. Orthod. Dentofacial Orthop. 2009, 135, 442–447, doi:10.1016/j.ajodo.2008.09.023.
[49]
Guerrero, A.P.; Guariza Filho, O.; Tanaka, O.; Camargo, E.S.; Vieira, S. Evaluation of frictional forces between ceramic brackets and archwires of different alloys compared with metal brackets. Braz. Oral Res. 2010, 24, 40–45, doi:10.1590/S1806-83242010000100007.
[50]
Bandeira, A.M.; dos Santos, M.P.; Pulitini, G.; Elias, C.N.; da Costa, M.F. Influence of thermal or chemical degradation on the frictional force of an experimental coated NiTi wire. Angle Orthod. 2011, 81, 484–489, doi:10.2319/042810-232.1.
[51]
Kobayashi, S.; Ohgoe, Y.; Ozeki, K.; Hirakuri, K.; Aoki, H. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. J. Mater. Sci. Mater. Med. 2007, 18, 2263–2268, doi:10.1007/s10856-007-3118-2.
[52]
Demling, A.; Elter, C.; Heidenblut, T.; Bach, F.W.; Hahn, A.; Schwestka-Polly, R.; Stiesch, M.; Heuer, W. Reduction of biofilm on orthodontic brackets with the use of a polytetrafluoroethylene coating. Eur. J. Orthod. 2010, 32, 414–418, doi:10.1093/ejo/cjp142.
[53]
Peláez-Vargas, A. Evaluación de la toxicidad in vitro, la adherencia y la nanotopografía de recubrimientos aplicados por sol-gel para implantes metálicos. Master’s Thesis, National University of Colombia, Medellín, Colombia, 2005.
[54]
Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008.
Junker, R.; Manders, P.J.; Wolke, J.; Borisov, Y.; Braceras, I.; Jansen, J.A. Loaded microplasma-sprayed CaP-coated implants in vivo. J. Dent. Res. 2010, 89, 1489–1493, doi:10.1177/0022034510384621.
[57]
Prymak, O.; Bogdansk, D.; Esenwein, S.A.; K?ller, M.; Epple, M. NiTi shape memory alloys coated with calcium phosphate by plasma-spraying. Chemical and biological properties. Materialwiss. Werkstofftech. 2004, 35, 346–351, doi:10.1002/mawe.200400753.
[58]
Sun, L.; Berndt, C.C.; Gross, K. A.; Kucuk, A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J. Biomed. Mater. Res. 2001, 58, 570–592, doi:10.1002/jbm.1056.
[59]
Park, J.H.; Sudarshan, T.S. Chemical Vapor Deposition; ASM International: Materials Park, OH, USA, 2001.
[60]
Tripi, T.R.; Bonaccorso, A.; Condorelli, G.G. Fabrication of hard coatings on NiTi instruments. J. Endod. 2003, 29, 132–134, doi:10.1097/00004770-200302000-00011.
[61]
Tripi, T.R.; Bonaccorso, A.; Rapisarda, E.; Tripi, V.; Condorelli, G.G.; Marino, R.; Fragalà, I. Depositions of nitrogen on NiTi instruments. J. Endod. 2002, 28, 497–500, doi:10.1097/00004770-200207000-00001.
[62]
Borges, C.F.; Magne, P.; Pfender, E.; Heberlein, J. Dental diamond burs made with a new technology. J. Prosthet. Dent. 1999, 82, 73–79, doi:10.1016/S0022-3913(99)70130-7.
[63]
Lima, L.M.; Motisuki, C.; dos Santos-Pinto, L.; dos Santos-Pinto, A.; Corat, E.J. Cutting characteristics of dental diamond burs made with CVD technology. Braz. Oral Res. 2006, 20, 155–161.
[64]
Mattox, D.M. Handbook of Physical Vapor Deposition Processing, 2nd ed.; Elsevier: Burlington, VT, USA, 2010.
Krishnan, V.; Krishnan, A.; Remya, R.; Ravikumar, K.K.; Nair, S.A.; Shibli, S.M.; Varma, H.K.; Sukumaran, K.; Kumar, K.J. Development and evaluation of two PVD-coated beta-titanium orthodontic archwires for fluoride-induced corrosion protection. Acta Biomater. 2011, 7, 1913–1927.
[68]
Cao, G.; Wang, Y. Nanostructures and Nanomaterials. Synthesis, Properties and Applications, 2nd ed.; World Scientific Publishing: Singapore, 2011.
[69]
Vásquez, A.; Damborenea, J. Ciencia e Ingeniería de la Superficie de los Materiales Metálicos; CSIC-Dpto. de Publicaciones: Madrid, Spain, 2001.
[70]
Shah, A.G.; Shetty, P.C.; Ramachandra, C.S.; Bhat, N.S.; Laxmikanth, S.M. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus. Angle Orthod. 2011, 81, 1028–1035, doi:10.2319/021111-101.1.
[71]
Ozeki, K.; Yuhta, T.; Aoki, H.; Fukui, Y. Inhibition of Ni release from NiTi alloy by hydroxyapatite, alumina, and titanium sputtered coatings. Biomed. Mater. Eng. 2003, 13, 271–279.
[72]
Ozeki, K.; Yuhta, T.; Aoki, H.; Asaoka, T.; Daisaku, T.; Fukui, Y. Deterioration in the superelasticity of Ti sputter coated on NiTi orthodontic wire. Biomed. Mater. Eng. 2003, 13, 355–362.
[73]
Surmenev, R.A.; Ryabtseva, M.A.; Shesterikov, E.V.; Pichugin, V.F.; Peitschm, T.; Epple, M. The release of nickel from nickel-titanium (NiTi) is strongly reduced by a sub-micrometer thin layer of calcium phosphate deposited by rf-magnetron sputtering. J. Mater. Sci. Mater. Med. 2010, 21, 1233–1239, doi:10.1007/s10856-010-3989-5.
[74]
Grainger, S.; Blunt, J. Engineering Coatings. Design and Application, 2nd ed.; Plastics Design Library: Cambridge, UK, 1998.
[75]
Redlich, M.; Gorodnev, A.; Feldman, Y.; Kaplan-Ashiri, I.; Tenne, R.; Fleischer, N.; Genut, M.; Feuerstein, N. Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS2 coating for improved stainless steel orthodontic wires. J. Mater. Res. 2008, 23, 2909–2915, doi:10.1557/JMR.2008.0350.
[76]
Samorodnitzky-Naveh, G.R.; Redlich, M.; Rapoport, L.; Feldman, Y.; Tenne, R. Inorganic fullerene-like tungsten disulfide nanocoating for friction reduction of nickel-titanium alloys. Nanomedicine (Lond.) 2009, 4, 943–950, doi:10.2217/nnm.09.68.
[77]
Zein El Abedin, S.; Welz-Biermann, U.; Endres, F. A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy. Electrochem. Commun. 2005, 7, 941–946, doi:10.1016/j.elecom.2005.06.007.
[78]
Qiu, D.; Wang, A.; Yin, Y. Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition. Appl. Surf. Sci. 2010, 257, 1774–1778, doi:10.1016/j.apsusc.2010.09.014.
[79]
Mackenzie, J.D.; Bescher, E.P. Physical properties of sol-gel coatings. J. Sol-Gel Sci. Technol. 2000, 19, 23–29, doi:10.1023/A:1008701903087.
[80]
Patil, K.R.; Hwang, Y.K.; Kim, M.J.; Chang, J.S.; Park, S.E. Preparation of thin films comprising palladium nanoparticles by a solid-liquid interface reaction technique. J. Colloid Interface Sci. 2004, 276, 333–338, doi:10.1016/j.jcis.2004.04.001.
[81]
Cable, M.; Parker, J.M. High-Performance Glasses; Springer: New York, NY, USA, 1992.
[82]
Bach, H.; Krause, D. Thin Films on Glass; Springer: Berlin, Germany, 2003.
[83]
Chun, M.J.; Shim, E.; Kho, E.H.; Park, K.J.; Jung, J.; Kim, J.M.; Kim, B.; Lee, K.H.; Cho, D.L.; Bai, D.H.; et al. Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod. 2007, 77, 483–488, doi:10.2319/0003-3219(2007)077[0483:SMOOWW]2.0.CO;2.
[84]
Rendón Arias, L.A.; Cano Correa, G.A.; peláez Vargas, A.; Jaramillo Vallejo, P.M.; García Garcia, C.; Góez, Y.M. Evaluación in vitro de la resistencia friccional entre brackets cerámicos y arcos de acero inoxidable con y sin recubrimiento vítreo aplicado por el método Sol-Gel. Rev. Fac. Odontol. Univ. Antioq. 2008, 20, 58–71.
[85]
Horiuchi, Y.; Horiuchi, M.; Hanawa, T.; Soma, K. Effect of surface modification on the photocatalysis of Ti-Ni alloy in orthodontics. Dent. Mater. J. 2007, 26, 924–929, doi:10.4012/dmj.26.924.
[86]
Narayan, R. Biomedical Materials; Springer: New York, NY, USA, 2009.
[87]
De Franco, D.J.; Spiller, R.E., Jr.; von Fraunhofer, J.A. Frictional resistances using Teflon-coated ligatures with various bracket-archwire combinations. Angle Orthod. 1995, 65, 63–72.
[88]
Neumann, P.; Bourauel, C.; Jager, A. Corrosion and permanent fracture resistance of coated and conventional orthodontic wires. J. Mater. Sci. Mater. Med. 2002, 13, 141–147, doi:10.1023/A:1013831011241.
[89]
Husmann, P.; Bourauel, C.; Wessinger, M.; J?ger, A. The frictional behavior of coated guiding archwires. J. Orofac. Orthop. 2002, 63, 199–211, doi:10.1007/s00056-002-0009-5.
[90]
Farronato, G.; Maijer, R.; Caria, M.P.; Esposito, L.; Alberzoni, D.; Cacciatore, G. The effect of Teflon coating on the resistance to sliding of orthodontic archwires. Eur. J. Orthod. 2012, 34, 410–417, doi:10.1093/ejo/cjr011.
[91]
Muguruma, T.; Iijima, M.; Brantley, W.A.; Mizoguchi, I. Effects of a diamond-like carbon coating on the frictional properties of orthodontic wires. Angle Orthod. 2011, 81, 141–148, doi:10.2319/052110-276.1.
[92]
Muguruma, T.; Iijima, M.; Brantley, W.A.; Nakagaki, S.; Endo, K.; Mizoguchi, I. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets. Eur. J. Orthod. 2011, doi:10.1093/ejo/cjr113.