全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using a Geographical-Information-System-Based Decision Support to Enhance Malaria Vector Control in Zambia

DOI: 10.1155/2012/363520

Full-Text   Cite this paper   Add to My Lib

Abstract:

Geographic information systems (GISs) with emerging technologies are being harnessed for studying spatial patterns in vector-borne diseases to reduce transmission. To implement effective vector control, increased knowledge on interactions of epidemiological and entomological malaria transmission determinants in the assessment of impact of interventions is critical. This requires availability of relevant spatial and attribute data to support malaria surveillance, monitoring, and evaluation. Monitoring the impact of vector control through a GIS-based decision support (DSS) has revealed spatial relative change in prevalence of infection and vector susceptibility to insecticides and has enabled measurement of spatial heterogeneity of trend or impact. The revealed trends and interrelationships have allowed the identification of areas with reduced parasitaemia and increased insecticide resistance thus demonstrating the impact of resistance on vector control. The GIS-based DSS provides opportunity for rational policy formulation and cost-effective utilization of limited resources for enhanced malaria vector control. 1. Introduction In Sub-Saharan Africa, malaria remains a major cause of morbidity and mortality [1]. Its transmission is driven by a complex interaction of the vector, host, parasite, and the environment, and is governed by different ecological and social determinants [2, 3]. The survival and bionomics of malaria vectors are affected by climate variability, that is, rainfall, temperature, and relative humidity [4]. In this light, even minute spatial variations and temporal heterogeneities in the mosquito population can result in significant malaria-risk [5, 6] and its endemicity [7–9]. Since malaria distribution is not homogeneous, much effort needs to be expended towards defining local spatial distribution of the disease [2] precedent to deployment of interventions [10]. In resource constrained environments, monitoring, and evaluation is often incomprehensive and irregular and tend to lack the actual spatial and temporal distribution patterns. If transmission determining parameters are to be harnessed effectively for decision-making and objectively plan, implement, monitor, and evaluate viable options for malaria vector control [11], they must be well organized, analyzed, and managed in the context of a geographical-information-system- (GIS-) based decision support system (DSS) [3, 12]. While vector control interventions are being deployed according to the World Health Organization-led Integrated Vector Management Straandtegy [10, 13, 14], prompt

References

[1]  WHO, “Roll back malaria: action or rhetoric? Round table discussion,” Bulletin of the World Health Organization, vol. 78, pp. 1450–1455, 2010.
[2]  S. I. Hay, C. J. Tucker, D. J. Rogers, and M. J. Packer, “Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease,” Annals of Tropical Medicine and Parasitology, vol. 90, pp. 1–19, 1996.
[3]  A. Daash, A. Srivastava, B. N. Nagpal, R. Saxena, and S. K. Gupta, “Geographical information system (GIS) in decision support to control malaria—a case study of Koraput district in Orissa, India,” Journal of Vector Borne Diseases, vol. 46, no. 1, pp. 72–74, 2009.
[4]  S. W. Lindsay, L. Parson, and C. J. Thomas, “Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data,” Proceedings of the Royal Society B, vol. 265, no. 1399, pp. 847–854, 1998.
[5]  B. L. Sharp and D. Le Sueur, “Malaria in South Africa—the past, the present and selected implications for the future,” Medecine Tropicale, vol. 56, no. 2, pp. 189–196, 1996.
[6]  A. J. McMichael and A. Haines, “Global climate change: the potential effects on health,” British Medical Journal, vol. 315, no. 7111, pp. 805–809, 1997.
[7]  R. W. Snow, J. A. Omumbo, B. Lowe et al., “Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa,” Lancet, vol. 349, no. 9066, pp. 1650–1654, 1997.
[8]  R. W. Snow and K. Marsh, “The consequences of reducing transmission of Plasmodium falciparum in Africa,” Advances in Parasitology, vol. 52, pp. 235–264, 2002.
[9]  M. B. Walker, “High risk behaviours related to maternal and child health,” West African Journal of Medicine, vol. 20, no. 4, pp. 203–209, 2001.
[10]  WHO, Global Strategic Framework for Integrated Vector Management, World Health Organization, Geneva, Switzerland, 2004.
[11]  D. L. Smith, J. Dushoff, R. W. Snow, and S. I. Hay, “The entomological inoculation rate and Plasmodium falciparum infection in African children,” Nature, vol. 438, no. 7067, pp. 492–495, 2005.
[12]  J. Hemingway, B. J. Beaty, M. Rowland, T. W. Scott, and B. L. Sharp, “The innovative vector control consortium: improved control of mosquito-borne diseases,” Trends in Parasitology, vol. 22, no. 7, pp. 308–312, 2006.
[13]  J. C. Beier, J. Keating, J. I. Githure, M. B. MacDonald, D. E. Impoinvil, and R. J. Novak, “Integrated vector management for malaria control,” Malaria Journal, vol. 7, no. 1, article S4, 2008.
[14]  E. Chanda, F. Masaninga, M. Coleman et al., “Integrated vector management: The Zambian experience,” Malaria Journal, vol. 7, article 164, 2008.
[15]  L. Eisen, M. Coleman, S. Lozano-Fuentes, Eachen N. Mc, M. Orlans, and M. Coleman, “Multi-disease data management system platform for vector-borne diseases,” PLoS Neglected Tropical Diseases, vol. 29, no. 5, article e1016, 2011.
[16]  R. Carter, K. N. Mendis, and D. Roberts, “Spatial targeting of interventions against malaria,” Bulletin of the World Health Organization, vol. 78, no. 12, pp. 1401–1411, 2000.
[17]  L. Eisen and R. J. Eisen, “Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases,” Annual Review of Entomology, vol. 56, pp. 41–61, 2011.
[18]  M. Booman, B. L. Sharp, C. L. Martin, B. Manjate, J. J. La Grange, and D. N. Durrheim, “Enhancing malaria control using a computerised management system in southern Africa,” Malaria Journal, vol. 2, no. 1, article 1, p. 13, 2003.
[19]  M. Coleman and J. Hemingway, “Insecticide resistance monitoring and evaluation in disease transmitting mosquitoes,” Journal of Pesticide Science, vol. 32, no. 2, pp. 69–76, 2007.
[20]  M. Coleman, B. Sharp, I. Seocharan, and J. Hemingway, “Developing an evidence-based decision support system for rational insecticide choice in the control of African malaria vectors,” Journal of Medical Entomology, vol. 43, no. 4, pp. 663–668, 2006.
[21]  MoH, National Malaria Strategic Plan 2006–2011: A Road Map for RBM Impact in Zambia, Ministry of Health, Lusaka, Zambia, 2006.
[22]  J. Keating, J. M. Miller, A. Bennett, H. B. Moonga, and T. P. Eisele, “Plasmodium falciparum parasite infection prevalence from a household survey in Zambia using microscopy and a rapid diagnostic test: Implications for monitoring and evaluation,” Acta Tropica, vol. 112, no. 3, pp. 277–282, 2009.
[23]  E. Chizema-Kawesha, J. M. Miller, R. W. Steketee et al., “Scaling up malaria control in Zambia: progress and impact 2005–2008,” The American Journal of Tropical Medicine and Hygiene, vol. 83, no. 3, pp. 480–488, 2010.
[24]  MoH, National Guidelines for Indoor Residual Spraying in Zambia, Ministry of Health, Luasaka, Zambia, 2009.
[25]  MoH, Guidelines on the Distribution and Utilization of Insecticide Treated Nets for Malaria Prevention and Control, Ministry of Health, Luasaka, Zambia, 2008.
[26]  MoH, Malaria Communication Strategy, Ministry of Health, Luasaka, Zambia, 2006.
[27]  C. F. Curtis, “The case for malaria control by genetic manipulation of its vectors,” Parasitology Today, vol. 10, no. 10, pp. 371–374, 1994.
[28]  MoH, Zambia National Malaria Annual Report 2007, Ministry of Health, Luasaka, Zambia, 2007.
[29]  P. Chanda, B. Hamainza, S. Mulenga, V. Chalwe, C. Msiska, and E. Chizema-Kawesha, “Early results of integrated malaria control and implications for the management of fever in under-five children at a peripheral health facility: a case study of Chongwe rural health centre in Zambia,” Malaria Journal, vol. 8, no. 1, article 49, 2009.
[30]  V. S. Orlof, The Concept of Stratification of Territories and Its Practical Implications, World Health Organization, Geneva, Switzerland, 1986.
[31]  WHO, Minutes MERG Anaemia Task Force Meeting, World Health Organization/Roll Back Malaria, Geneva, Switzerland, 2003.
[32]  E. Chanda, J. Hemingway, I. Kleinschmidt, et al., “Insecticide resistance and the future of malaria control in Zambia,” PLoSONE, vol. 6, no. 9, article e24336, 2011.
[33]  MoH, Zambia National Malaria Programme Performance Review 2010, Ministry of Health, Lusaka, Zambia, 2010.
[34]  N. Riedel, P. Vounatsou, J. M. Miller et al., “Geographical patterns and predictors of malaria risk in Zambia: bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS),” Malaria Journal, vol. 9, no. 1, article 37, 2010.
[35]  WHO, “Test Procedures for Insecticide Resistance Monitoring in Malaria Vectors, Bio-efficacy and Persistence of insecticides in treated surfaces,” Report of the WHO Informal Consultation WHO/CDS/CPC/MAL/98.12, World Health Organization, Geneva, Switzerland, 1998.
[36]  C. Bass, M. S. Williamson, C. S. Wilding, M. J. Donnelly, and L. M. Field, “Identification of the main malaria vectors in the Anopheles gambiae species complex using a TaqMan real-time PCR assay,” Malaria Journal, vol. 6, article 155, 2007.
[37]  Zambia National Malaria Indicator Survey Report, Ministry of Health, Lusaka, Zambia, 2010.
[38]  R. Komatsu, D. Low-Beer, and B. Schwartl?nder, “Global Fund-supported programmes' contribution to international targets and the Millennium Development Goals: an initial analysis,” Bulletin of the World Health Organization, vol. 85, no. 10, pp. 805–811, 2007.
[39]  T. C. Nchinda, “Malaria: a reemerging disease in Africa,” Emerging Infectious Diseases, vol. 4, no. 3, pp. 398–403, 1998.
[40]  K. Marsh, “Malaria disaster in Africa,” Lancet, vol. 352, no. 9132, p. 924, 1998.
[41]  WHO, World Malaria Report 2008, WHO/HTM/GMP/2008.1, 2008.
[42]  C. A. Goodman, P. G. Coleman, and A. J. Mills, “Cost-effectiveness of malaria control in sub-Saharan Africa,” Lancet, vol. 354, no. 9176, pp. 378–385, 1999.
[43]  S. J. Connor, S. Flasse, A. Erryman, and M. C. Homson, The Contribution of Satellite Derived Information to Malaria Stratification Monitoring and Early Warning, World Health Organization, Geneva, Switzerland, 1997.
[44]  R. W. Snow, E. Gouws, J. Omumbo et al., “Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 92, no. 6, pp. 601–606, 1998.
[45]  MoH, National Malaria Situation Analysis, Ministry of Health, Lusaka, Zambia, 2000.
[46]  B. M. Greenwood, “The microepidemiology of malaria and its importance to malaria control,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 83, pp. 25–29, 1989.
[47]  C. Castillo-Salgado, “Epidemiological risk stratification of malaria in the Americas,” Memorias do Instituto Oswaldo Cruz, vol. 87, pp. 115–120, 1992.
[48]  B. L. Sharp, F. C. Ridl, D. Govender, J. Kuklinski, and I. Kleinschmidt, “Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea,” Malaria Journal, vol. 6, article 52, 2007.
[49]  M. Coleman, S. Casimiro, J. Hemingway, and B. Sharp, “Operational impact of DDT reintroduction for malaria control on Anopheles arabiensis in Mozambique,” Journal of Medical Entomology, vol. 45, no. 5, pp. 885–890, 2008.
[50]  N. Protopopoff, W. Van Bortel, T. Marcotty et al., “Spatial targeted vector control in the highlands of Burundi and its impact on malaria transmission,” Malaria Journal, vol. 6, article 158, 2007.
[51]  G. P. Singh, S. Chitkara, N. L. Kalra, K. B. Makepur, and M. V. Narasimham, “Development of a methodology for malariogenic stratification as a tool for malaria control,” Journal of Communicable Diseases, vol. 22, no. 1, pp. 1–11, 1990.
[52]  T. Smith, J. D. Charlwood, W. Takken, M. Tanner, and D. J. Spiegelhalter, “Mapping the densities of malaria vectors within a single village,” Acta Tropica, vol. 59, no. 1, pp. 1–18, 1995.
[53]  S. B. Thacker, K. Choi, and P. S. Brachman, “The surveillance of infectious diseases,” Journal of the American Medical Association, vol. 249, no. 9, pp. 1181–1185, 1983.
[54]  S. M. Teusch, “Considerations in planning a surveillance system,” in Priciples and Practice of Public Health Surveillance, S. M. Teusch and R. E. Churchhill, Eds., pp. 18–28, Oxford University Press, New York, NY, USA, 1994.
[55]  E. S. Some, D. K. Koech, J. O. Ochogo, F. Ocholla, and F. Mumbi, “An evaluation of surveillance of malaria at primary health care level in Kenya,” East African Medical Journal, vol. 74, no. 9, pp. 573–575, 1997.
[56]  M. Booman, D. N. Durrheim, K. La Grange et al., “Using a geographical information system to plan a malaria control programme in South Africa,” Bulletin of the World Health Organization, vol. 78, no. 12, pp. 1438–1444, 2000.
[57]  U. Kitron, “Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis,” Journal of Medical Entomology, vol. 35, no. 4, pp. 435–445, 1998.
[58]  F. F. Nobre, A. L. Braga, R. S. Pinheiro, and J. A. Dos Santos Lopes, “GISEpi: a simple geographical information system to support public health surveillance and epidemiological investigations,” Computer Methods and Programs in Biomedicine, vol. 53, no. 1, pp. 33–45, 1997.
[59]  MARA/AMRA, “Towards an Atlas of Malaria Risk in Africa,” First Technical Report of the MARA/ARMA Collaboration, Durban, South Africa, 1998, http://www.mara.org.za.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133