Development and Application of an ELISA Assay Using Excretion/Secretion Proteins from Epimastigote Forms of T. cruzi (ESEA Antigens) for the Diagnosis of Chagas Disease
An indirect enzyme-linked immunoabsorbent assay (ELISA) for Trypanosoma cruzi was developed using epimastigote secretion/excretion proteins (ESEA antigens) obtained from axenic culture supernatants. A panel of 120 serum samples from subjects with confirmed Chagas disease , healthy controls , and patients with other parasitic diseases was used to evaluate the new ESEA-based ELISA (ELISAESEA). This new test had excellent sensitivity (98%) and acceptable specificity (88%). Cross-reactivity was observed largely in sera from subjects with Leishmania and Ascaris infections. Using Western blotting and epimastigotes from two distinct T. cruzi isolates, several polypeptide bands with molecular masses ranging from 50 to 220?kDa were detected in pooled chagasic sera. However, the band pattern for each isolate was different. These data suggest that an inexpensive and technically simple ELISA based on ESEA antigens is a promising new tool for the diagnosis of Chagas disease. 1. Introduction Chagas disease, discovered by Dr. Carlos Chagas in 1909, is caused by the protozoan parasite, Trypanosoma cruzi. This parasite can be transmitted by triatomine vectors, blood transfusions, laboratory accidents, organ transplantation, or through vertical transmission. The disease is endemic in 18 Latin American countries. In 2008, the World Health Organization (WHO) estimates that ~8 million people were infected resulting in ~11?000 deaths per year [1]. Despite decades of effort, there is still no gold standard test for the diagnosis of Chagas disease and several international organizations have recently emphasized the need for improved serodiagnostic tests [1]. To this end, many companies and research groups have developed a range of parasitologic, serologic, and nucleic acid-based assays. The most common methods include the indirect immunofluorescence assay (IFA), indirect haemagglutination assay (IHA), and the enzyme-linked immunosorbent assay (ELISA) [2]. The target antigens in these latter assays have included whole fixed parasites [3], 67 and 90-kDa lectin purified proteins [4, 5], synthetic peptides [6], recombinant proteins [7–14], and trypomastigote excreted/secreted antigen (TESA). Of these antigens, TESA proteins have shown particular promise in different assay formats (ELISA-TESA, Western blot) and in several different laboratories and geographic settings [15–19]. Unfortunately, the production of TESA antigen requires adequate cell culture facilities and other sophisticated infrastructure that are not always available to laboratories in resource-poor settings. Thus, in
References
[1]
WHO, “Chagas disease: Control and elimination,” http://apps.who.int/gb /ebwha/pdf_files/WHA63/A63_17-en.pdf, 2010.
[2]
F. Lopez-Antunado, H. Rangel-Flores, and C. Ramos, “Diagnosis of Chagas' Disease,” Revista Latinoamericana de Microbiología, vol. 42, pp. 121–129, 2000.
[3]
M. Berrizbietia, M. Ndao, M. Gottschalk et al., “Development and comparison of enzyme immunoassays for diagnosis of Chagas' disease using fixed forms of Trypanosoma cruzi (Epimastigotes, Amastigotes, and Trypomastigotes) and assessment of antigen stability for the three assays,” Journal of Clinical Microbiology, vol. 42, no. 4, pp. 1766–1769, 2004.
[4]
M. Schechter, J. E. Flint, and A. Voller, “Purified Trypanosoma cruzi specific glycoprotein for discriminative serological diagnosis of South American trypanosomiasis (Chagas' disease),” The Lancet, vol. 2, no. 8356, pp. 939–941, 1983.
[5]
I. S. Marcipar, E. Welchen, C. Roodveldt, A. J. Marcipar, and A. M. Silber, “Purification of the 67-kDa lectin-like glycoprotein of Trypanosoma cruzi, LLGP-67, and its evaluation as a relevant antigen for the diagnosis of human infection,” FEMS Microbiology Letters, vol. 220, no. 1, pp. 149–154, 2003.
[6]
J. M. Peralta, M. D. G. M. Teixeira, W. G. Shreffler et al., “Serodiagnosis of Chagas' disease by enzyme-linked immunosorbent assay using two synthetic peptides as antigens,” Journal of Clinical Microbiology, vol. 32, no. 4, pp. 971–974, 1994.
[7]
W. S. F. Meira, L. M. C. Galv?o, E. D. Gontijo, G. L. L. Machado-Coelho, K. A. Norris, and E. Chiari, “Use of the Trypanosoma cruzi Recombinant Complement Regulatory Protein To Evaluate Therapeutic Efficacy following Treatment of Chronic Chagasic Patients,” Journal of Clinical Microbiology, vol. 42, no. 2, pp. 707–712, 2004.
[8]
E. S. Umezawa, S. F. Bastos, J. R. Coura et al., “An improved serodiagnostic test for Chagas' disease employing a mixture of Trypanosoma cruzi recombinant antigens,” Transfusion, vol. 43, no. 1, pp. 91–97, 2003.
[9]
W. S. F. Meira, L. M. C. Galv?o, E. D. Gontijo, G. L. L. Machado-Coelho, K. A. Norris, and E. Chiari, “Trypanosoma cruzi recombinant complement regulatory protein: a novel antigen for use in an enzyme-linked immunosorbent assay for diagnosis of Chagas' disease,” Journal of Clinical Microbiology, vol. 40, no. 10, pp. 3735–3740, 2002.
[10]
E. D. Silva, V. R. A. Pereira, J. A. S. Gomes et al., “Use of the EIE-recombinant-Chagas-biomanguinhos kit to monitor cure of human Chagas' disease,” Journal of Clinical Laboratory Analysis, vol. 16, no. 3, pp. 132–136, 2002.
[11]
A. W. Ferreira, Z. R. Belem, E. A. Lemos, S. G. Reed, and A. Campos-Neto, “Enzyme-linked immunosorbent assay for serological diagnosis of chagas' disease employing a Trypanosoma cruzi recombinant antigen that consists of four different peptides,” Journal of Clinical Microbiology, vol. 39, no. 12, pp. 4390–4395, 2001.
[12]
Y. M. Gomes, V. R. A. Pereira, M. Nakazawa et al., “Serodiagnosis of chronic Chagas infection by using EIE-Recombinant-Chagas-Biomanguinhos kit,” Memorias do Instituto Oswaldo Cruz, vol. 96, no. 4, pp. 497–501, 2001.
[13]
J. F. Da Silveira, E. S. Umezawa, and A. O. Luquetti, “Chagas disease: recombinant Trypanosoma cruzi antigens for serological diagnosis,” Trends in Parasitology, vol. 17, no. 6, pp. 286–291, 2001.
[14]
R. L. Houghton, D. R. Benson, L. Reynolds et al., “Multiepitope synthetic peptide and recombinant protein for the detection of antibodies to Trypanosoma cruzi in patients with treated or untreated Chagas' disease,” Journal of Infectious Diseases, vol. 181, no. 1, pp. 325–330, 2000.
[15]
M. Berrizbeitia, M. Ndao, J. Bubis et al., “Field evaluation of four novel enzyme immunoassays for Chagas' disease in Venezuela blood banks: comparison of assays using fixed-epimastigotes, fixed-trypomastigotes or trypomastigote excreted-secreted antigens from two Trypanosoma cruzi strains,” Transfusion Medicine, vol. 16, no. 6, pp. 419–431, 2006.
[16]
M. Berrizbeitia, M. Ndao, J. Bubis et al., “Purified excreted-secreted antigens from Trypanosoma cruzi trypomastigotes as tools for diagnosis of Chagas' disease,” Journal of Clinical Microbiology, vol. 44, no. 2, pp. 291–296, 2006.
[17]
N. Kesper Jr., K. A. De Almeida, A. M. S. Stolf, and E. S. Umezawa, “Immunoblot analysis of trypomastigote excreted-secreted antigens as a tool for the characterization of Trypanosoma cruzi strains and isolates,” Journal of Parasitology, vol. 86, no. 4, pp. 862–867, 2000.
[18]
E. S. Umezawa, M. S. Nascimento, N. Kesper Jr. et al., “Immunoblot assay using excreted-secreted antigens of Trypanosoma cruzi in serodiagnosis of congenital, acute, and chronic Chagas' disease,” Journal of Clinical Microbiology, vol. 34, no. 9, pp. 2143–2147, 1996.
[19]
E. S. Umezawa, M. S. Nascimento, and A. M. S. Stolf, “Enzyme-linked immunosorbent assay with Trypanosoma cruzi excreted-secreted antigens (TESA-ELISA) for serodiagnosis of acute and chronic Chagas' disease,” Diagnostic Microbiology and Infectious Disease, vol. 39, no. 3, pp. 169–176, 2001.
[20]
A. M. Lissaldo, S. Hoshino-Shimizu, E. S. Umezawa, and A. M. Stolf, “Alkaline soluble Trypanosoma cruzi epimastigote antigen (ASEA) applied to Dot-ELISA.,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 36, no. 2, pp. 163–166, 1994.
[21]
I. C. Almeida, D. T. Covas, L. M. T. Soussumi, and L. R. Travassos, “A highly sensitive and specific chemiluminescent enzyme-linked immunosorbent assay for diagnosis of active Trypanosoma cruzi infection,” Transfusion, vol. 37, no. 8, pp. 850–857, 1997.
[22]
C. D. Partel and C. L. Rossi, “A rapid, quantitative enzyme-linked immunosorbent assay (ELISA) for the immunodiagnosis of Chagas' disease,” Immunological Investigations, vol. 27, no. 1-2, pp. 89–96, 1998.
[23]
R. T. Pinho, R. C. Pedrosa, P. Costa-Martins, and L. R. R. Castello-Branco, “Saliva ELISA: a method for the diagnosis of chronic Chagas disease in endemic areas,” Acta Tropica, vol. 72, no. 1, pp. 31–38, 1999.
[24]
L. H. Tobler, P. Contestable, L. Pitina et al., “Evaluation of a new enzyme-linked immunosorbent assay for detection of Chagas antibody in US blood donors,” Transfusion, vol. 47, no. 1, pp. 90–96, 2007.
[25]
N. Gonzalez, I. Galindo, P. Guevara et al., “Identification and detection of Trypanosoma cruzi by using a DNA amplification fingerprint obtained from the ribosomal intergenic spacer,” Journal of Clinical Microbiology, vol. 32, no. 1, pp. 153–158, 1994.
[26]
R. P. Souto and B. Zingales, “Sensitive detection and strain classification of Trypanosoma cruzi by amplification of a ribosomal RNA sequence,” Molecular and Biochemical Parasitology, vol. 62, no. 1, pp. 45–52, 1993.
[27]
U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[28]
H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979.
[29]
J. Crowther, The ELISA Guidebook, Springer, New York, NY, USA, 1st edition, 2000.
[30]
Y. Campos, L. Brice?o, K. Reina, K. Figarella, J. L. Pérez, and W. Mosca, “Serological diagnosis of Chagas disease: evaluation and characterisation of a low cost antigen with high sensitivity and specificity,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 6, pp. 914–917, 2009.
[31]
W. R. Cuna, C. Rodriguez, F. Torrico, D. Afchain, M. Loyens, and P. Desjeux, “Evaluation of a competitive antibody enzyme immunoassay for specific diagnosis of Chagas' disease,” Journal of Parasitology, vol. 75, no. 3, pp. 357–359, 1989.
[32]
D. Cannaova, C. Aguilar, M. Pacheco, M. Simons, and M. Medina, “Validación del Inmuno Ensayo Enzimático (ELISA) y Hemoaglutinación Indirecta (HAI) para el Serodiagnóstico de la Enfermedad de Chagas,” Salus, no. 3, pp. 4–9, 2002.
[33]
S. Telles, T. Abate, T. Slezynger, and D. A. Henriquez, “Trypanosoma cruzi ubiquitin as an antigen in the differential diagnosis of Chagas disease and leishmaniasis,” FEMS Immunology and Medical Microbiology, vol. 37, no. 1, pp. 23–28, 2003.
[34]
M. Schechter, A. O. Luquetti, J. M. Rezende, A. Rassi, and M. A. Miles, “Further evaluation of lectin affinity purified glycoprotein (GP90) in the enzyme linked immunosorbent assay (ELISA) for diagnosis of Trypanosoma cruzi infection,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 79, no. 5, pp. 637–640, 1985.
[35]
M. Berrizbeitia, B. J. Ward, J. Bubis et al., “85-kDa protein of Trypanosoma cruzi purified by affinity chromatography used in the multiple antigen binding assay (MABA) for the diagnosis of T. cruzi infection in a Venezuelan rural community,” Parasitology Research, vol. 106, no. 5, pp. 1127–1134, 2010.
[36]
M. Nakazawa, D. S. Rosa, V. R. A. Pereira et al., “Excretory-secretory antigens of Trypanosoma cruzi are potentially useful for serodiagnosis of chronic Chagas' disease,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 5, pp. 1024–1027, 2001.
[37]
E. P. Silveira-Lacerda, A. G. Silva, S. F. Junior et al., “Chagas' disease: application of TESA-blot in inconclusive sera from a Brazilian blood bank,” Vox Sanguinis, vol. 87, no. 3, pp. 204–207, 2004.