全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Coatings  2013 

Computational Tools and Approaches for Design and Control of Coating and Composite Color, Appearance, and Electromagnetic Signature

DOI: 10.3390/coatings3020059

Keywords: electromagnetic radiation, light scattering, surface scattering, bulk scattering, inclusion scattering, color, appearance, electromagnetic signature, geometric optics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The transport behavior of electromagnetic radiation through a polymeric coating or composite is the basis for the material color, appearance, and overall electromagnetic signature. As multifunctional materials become more advanced and next generation in-service applications become more demanding, a need for predictive design of electromagnetic signature is desired. This paper presents various components developed and used in a computational suite for the study and design of electromagnetic radiation transport properties in polymeric coatings and composites. Focus is given to the treatment of the forward or direct scattering problem on surfaces and in bulk matrices of polymeric materials. The suite consists of surface and bulk light scattering simulation modules that may be coupled together to produce a multiscale model for predicting the electromagnetic signature of various material systems. Geometric optics ray tracing is used to predict surface scattering behavior of realistically rough surfaces, while a coupled ray tracing-finite element approach is used to predict bulk scattering behavior of material matrices consisting of microscale and nanoscale fillers, pigments, fibers, air voids, and other inclusions. Extension of the suite to color change and appearance metamerism is addressed, as well as the differences between discrete versus statistical material modeling.

References

[1]  Martelli, F.; Del Bianco, S.; Ismaelli, A.; Zaccanti, G. Light Propagation through Biological Tissue and Other Diffusive Media; SPIE Press: Bellingham, WA, USA, 2010.
[2]  Tishkovets, V.P. Incoherent and coherent backscattering of light by a layer of densely packed random medium. J. Quant. Spectrosc. Radiat. Transfer 2007, 108, 454–463, doi:10.1016/j.jqsrt.2007.06.008.
[3]  Tishkovets, V.P. Light scattering by closely packed clusters: Shielding of particles by each other in the near field. J. Quant. Spectrosc. Radiat. Transfer 2008, 109, 2665–2672, doi:10.1016/j.jqsrt.2008.05.008.
[4]  Tishkovets, V.P.; Jockers, K. Multiple scattering of light by densely packed random media of spherical particles: Dense media vector radiative transfer equation. J. Quant. Spectrosc. Radiat. Transfer 2006, 101, 52–74.
[5]  Light Scattering and Nanoscale Surface Roughness; Maradudin, A.A., Ed.; Nanostructure Science and Technology Series XXIV; Springer: New York, NY, USA, 2007.
[6]  Van de Hulst, H.C. Light Scattering by Small Particles; John Wiley & Sons: New York, NY, USA, 1957.
[7]  Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: New York, NY, USA, 1983; p. 530.
[8]  Beckmann, P.; Spizzichino, A. The Scattering of Electromagnetic Waves from Rough Surfaces; Oxford: New York, NY, USA, 1963; p. 503.
[9]  Chen, M.F.; Fung, A.K. A numerical study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models. Radio Sci. 1988, 23, 163–170, doi:10.1029/RS023i002p00163.
[10]  Thorsos, E.I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am. 1988, 83, 78–92, doi:10.1121/1.396188.
[11]  Davies, H. The reflection of electromagnetic waves from a rough surface. Proc. IEE 1954, 101, 209–214.
[12]  Beckmann, P. A new approach to the problem of reflection from a rough surface. Acta Techn. CSAV 1957, 2, 311–355.
[13]  Thomas, T.R. Rough Surfaces, 2nd ed.; Imperial College Press: London, UK, 1999.
[14]  Dorsey, J.; Rushmeier, H.; Sillion, F. Digital Modeling of Material Appearance; Elsevier: New York, NY, USA, 2008.
[15]  Tang, K.; Buckius, R.O. The geometric optics approximation for reflection from two-dimensional random rough surfaces. Int. J. Heat Mass Transfer 1998, 41, 2037–2047.
[16]  Tang, K.; Dimenna, R.A.; Buckius, R.O. Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces. Int. J. Heat Mass Transfer 1997, 40, 49–59.
[17]  Warnick, K.F.; Arnold, D.V. Generalization of the geometrical-optics scattering limit for a rough conduting surface. Opt. Soc. Am. 1998, 15, 2355–2361.
[18]  Bergstrom, D.; Powell, D.; Kaplan, A.F.H. A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces. J. Appl. Phys. 2007, 101, 113504, doi:10.1063/1.2738417.
[19]  Nicodemus, F.E. Directional reflectance and emissivity of an opaque surface. Appl. Opt. 1965, 4, 767–773, doi:10.1364/AO.4.000767.
[20]  Parvianen, H.; Muinonen, K. Bidirectional reflectance of rough particualte media: Ray-tracing solution. J. Quant. Spectrosc. Radiat. Trans. 2009, 110, 1418–1440, doi:10.1016/j.jqsrt.2009.02.030.
[21]  Brockelman, R.A.; Hagfors, T. Note on the effect of shadowing on the backscattering of waves from a random rough surface. IEEE Trans. Ant. Prop. 1966, 14, 621–626, doi:10.1109/TAP.1966.1138758.
[22]  Sapper, E.; Hinderliter, B. A Hybrid Computational Approach for Simulation the Scattering of Electromagnetic Radiation in Coatings and Composite Materials. CoatingsTech Conference, Rosemont, IL, USA, 2013.
[23]  Bennett, J.M.; Mattsson, L. Introduction to Surface Roughness and Scattering; Optical Society of America: Washington, D.C., WA, USA, 1989; p. 110.
[24]  Tsang, L.; Kong, J.A.; Ding, K.-H.; Ao, C.O. Scattering of Electromagnetic Waves: Numerical Simulations; John Wiley & Sons: New York, NY, USA, 2001.
[25]  Stover, J.C. Optical Scattering: Measurement and Analysis; SPIE Press: Bellingham, WA, USA, 1995.
[26]  Bergstrom, D. The Absorption of Laser Light by Rough Metal Surfaces. Ph.D. Thesis, Lule? University of Technology, Lule?, Sweden, 2008.
[27]  Mishenko, M.I.; Travis, L.D. Gustav Mie and the evolving discipline of electromagnetic scattering by particles. Bull. Am. Meteorol. Soc. 2008, 89, 1853–1861, doi:10.1175/2008BAMS2632.1.
[28]  Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509.
[29]  Rother, T.; Schmidt, K. The discretized Mie-formalism—A novel algorithm to treat scattering on axisymmetric particles. J. Electromag. Wav. Appl. 1996, 10, 273–297, doi:10.1163/156939396X01026.
[30]  Rother, T.; Schmidt, K. The discretized Mie-formalism for plane wave scattering on dielectric objects with non-separable geometries. J. Quant. Spectrosc. Radiat. Transfer 1996, 55, 615–625, doi:10.1016/0022-4073(96)00005-2.
[31]  Berns, R.S. Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2000.
[32]  Phillips, D.G.; Billmeyer, F.W. Predicting reflectance and color of paint films by Kubelka-Munk analysis. J. Coat. Technol. 1976, 48, 30–36.
[33]  Kubelka, P. New contributions to the optics of intensely light-scattering material, part I. J. Opt. Soc. Am. 1948, 38, 448, doi:10.1364/JOSA.38.000448.
[34]  Kubelka, P. New contributions to the optics of intensely light-scattering material, part II. J. Opt. Soc. Am. 1954, 44, 330, doi:10.1364/JOSA.44.000330.
[35]  Kubelka, P.; Munk, F. Ein beitrag zur optik der farbanstriche. Z. Tech. Physik. 1931, 12, 330.
[36]  Bierwagen, G.P. Estimation of film thickness nonuniformity effects on coating optical properties. Col. Res. Appl. 1992, 17, 284–292, doi:10.1002/col.5080170409.
[37]  Billmeyer, F.W.; Chassaigne, P.G.; Dubois, J.F. Determining pigment optical properties for use in the mie and many-flux theories. Col. Res. Appl. 1980, 5, 108–112, doi:10.1002/col.5080050213.
[38]  Maxwell, J.C. On physical lines of force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1861, 21, 161–175, 281–291, 338–348.
[39]  COMSOL. COMSOL Multiphysics RF Module User’s Guide; COMSOL AB: Burlington, MA, USA, 2006.
[40]  Jackson, J. Classical Electrodynamics; John Wiley & Sons: New York, NY, USA, 1998.
[41]  Shadowitz, A. The Electromagnetic Field. In Dover Books on Physics; Dover: New York, NY, USA, 2010.
[42]  Westland, S.; Ripamonti, C. Computaitonal Colour Science Using MATLAB; John Wiley & Sons: West Sussex, UK, 2004.
[43]  Leach, A. Molecular Modeling: Principles and Applications, 2nd ed.; Prentice Hall: New York, NY, USA, 2001.
[44]  Pople, J.A.; Santry, D.P.; Segal, G.A. Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. Chem. Phys. 1965, 43, S129, doi:10.1063/1.1701475.
[45]  Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909.
[46]  Mahnaz, M.; Mahdi, N.; Lawrence, T.; Roy, B. Pigment selection using Kubelka-Munk turbid media theory and non-negative least square technique. Available online: https://ritdml.rit.edu/handle/1850/4353 (accessed on 3 April 2013).
[47]  Latimer, P.; Noh, S.J. Light propagation in moderately dense particle systems: A reexamination of the Kubelka-Monk theory. Appl. Opt. 1987, 26, 514–523, doi:10.1364/AO.26.000514.
[48]  Molenaar, R.; Bosch, J.J.T.; Zijp, J.R. Determination of Kubelka-Munk scattering and absorption coefficients by diffuse illumination. Appl. Opt. 1999, 38, 2068–2077, doi:10.1364/AO.38.002068.
[49]  Murphy, A.B. Modified Kubelka-Munk model for calculation of the reflectance of coatins with optically-rough surfaces. J. Phys. D 2006, 39, 3571–3581, doi:10.1088/0022-3727/39/16/008.
[50]  Vargas, W.E.; Niklasson, G.A. Applicability conditions of the Kubelka-Munk theory. Appl. Opt. 1997, 36, 5580–5586, doi:10.1364/AO.36.005580.
[51]  Saunderson, J.L. Calculation of the color of pigmented plastics. J. Opt. Soc. Am. 1942, 32, 727–736, doi:10.1364/JOSA.32.000727.
[52]  HunterLab. The Kubelka-Monk theory and K/S. Available online: http://www.hunterlab.com/appnotes/an07_06.pdf (accessed on 3 April 2013).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133